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Variability of mitochondrial ORFans hints at
possible differences in the system of
doubly uniparental inheritance of
mitochondria among families of freshwater
mussels (Bivalvia: Unionida)
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Abstract

Background: Supernumerary ORFan genes (i.e., open reading frames without obvious homology to other genes) are
present in the mitochondrial genomes of gonochoric freshwater mussels (Bivalvia: Unionida) showing doubly uniparental
inheritance (DUI) of mitochondria. DUI is a system in which distinct female-transmitted and male-transmitted mitotypes
coexist in a single species. In families Unionidae and Margaritiferidae, the transition from dioecy to hermaphroditism and
the loss of DUI appear to be linked, and this event seems to affect the integrity of the ORFan genes. These observations
led to the hypothesis that the ORFans have a role in DUI and/or sex determination. Complete mitochondrial genome
sequences are however scarce for most families of freshwater mussels, therefore hindering a clear localization of DUI in
the various lineages and a comprehensive understanding of the influence of the ORFans on DUI and sexual systems.
Therefore, we sequenced and characterized eleven new mitogenomes from poorly sampled freshwater mussel families to
gather information on the evolution and variability of the ORFan genes and their protein products.

Results: We obtained ten complete plus one almost complete mitogenome sequence from ten representative
species (gonochoric and hermaphroditic) of families Margaritiferidae, Hyriidae, Mulleriidae, and Iridinidae.
ORFan genes are present only in DUI species from Margaritiferidae and Hyriidae, while non-DUI species from
Hyriidae, Iridinidae, and Mulleriidae lack them completely, independently of their sexual system. Comparisons
among the proteins translated from the newly characterized ORFans and already known ones provide
evidence of conserved structures, as well as family-specific features.

Conclusions: The ORFan proteins show a comparable organization of secondary structures among different families
of freshwater mussels, which supports a conserved physiological role, but also have distinctive family-specific features.
Given this latter observation and the fact that the ORFans can be either highly mutated or completely absent in
species that secondarily lost DUI depending on their respective family, we hypothesize that some aspects of the
connection among ORFans, sexual systems, and DUI may differ in the various lineages of unionids.

Keywords: Freshwater mussels, Doubly uniparental inheritance of mitochondrial DNA, mtDNA sequencing,
Mitochondrial ORFan genes, Evolution of protein structures and functions, Mitochondria and sexual systems
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Background
Many species of gonochoric bivalve molluscs from four dif-
ferent orders (Unionida, Mytilida, Venerida, Nuculanida)
possess a peculiar mode of mitochondrial transmission
called doubly uniparental inheritance, or DUI, which is par-
ticularly well-documented (~ 80 species) in freshwater mus-
sels of the order Unionida [1, 2]. DUI basically consists of a
cyclic parent-specific inheritance of two distinct mitochon-
drial (mt) genomes (or mtDNA), where females segregate
only the so called F (“female-transmitted”) mtDNA in their
eggs and males segregate only the other mitotype, named M
(“male-transmitted”), in their sperm. The zygote is hetero-
plasmic but, depending on its sexual development in the
subsequent stages, i.e. whether it will become a female or a
male as an adult, an individual will transmit only one of
these two types of mt genomes to the next generation [1].
DUI seems to be strictly associated with the gonochoristic
sexual system of a particular species, as it was discovered
that four species of unionids and one species of margariti-
ferid each appear to have lost independently their M
mtDNA during the transition from dioecy to hermaphrodit-
ism [3]. Notice that, however, it is not known if the loss of
the M type is perfectly contemporaneous with the switch to
hermaphroditism. All these mentioned obligate hermaphro-
ditic species now retain only a modified version of the F
genome that is called the H genome (for “hermaphrodite”)
[3]. In an attempt to understand if and how DUI and sex de-
termination are connected, genomic studies have
highlighted the following features of DUI in freshwater
mussel mtDNAs: (1) a high level of sequence divergence be-
tween F and M (up to ~ 40% of difference in their nucleo-
tide sequences, resulting into an almost 50% difference in
the amino acid sequence of their encoded proteins [4, 5]);
(2) the presence of a 3′-elongation of the cox2 gene in the
M mtDNA (compared to that found in most metazoans)
[6]; (3) the presence in both mt genomes of “ORFan” genes,
i.e., genes without obvious homology or function [7], named
F-orf in the F mtDNA and M-orf in the M mtDNA, respect-
ively [8]. An ORFan is found also in the H mtDNAs men-
tioned above: it is a highly mutated F-orf and is named H-
orf for distinction [3]. It is worth noting that these features
of DUI-positive freshwater mussel mtDNAs also appear in
practically all DUI bivalves outside Unionida, although with
many variations and combinations (e.g., F vs M divergence
can be lower; elongated cox2 genes can appear in the F in-
stead of the M, or be absent from both; and mtDNA-
specific ORFans can be present in only one of the two
mtDNAs or duplicated in a same mt genome [1, 5, 9–12]).
Additional coding sequences are sometimes found in the
mtDNA of bivalves (with or without DUI) and even other
molluscan species [9, 13–22]. Usually they are identifiable as
duplicated standard mitochondrial protein coding genes,
with a variable degree of similarity to the original sequence.
In fact, the two copies can evolve in tandem but, in other

cases, the only recognizable parts consist of small segments
encoding functional domains of the original mitochondrial
genes. In absence of further functional studies, this leads us
to hypothesize that the primary function of these genes, if
indeed they retain functionality, might be related to oxida-
tive phosphorylation.
Functional studies focusing on the ORFan genes F-orf

and M-orf in DUI bivalves provided evidence they are
transcribed and translated into proteins (from here on
respectively indicated as F-ORF and M-ORF) located in-
side and outside the mitochondria [3, 10, 23–26]. More-
over, extensive bioinformatic studies on both the gene
sequences and their translated proteins produced evi-
dence for two options for the origin of the ORFans,
which may be the result of either (1) the insertion of
viral sequences into the host mt genome [23, 27] or (2)
the duplication and subsequent modification of extant
mitochondrial genes and sequences [5, 28]. Analyses
aimed at understanding their origin by predicting the
functions of their protein products broadly converged
on similar patterns in all species considered (freshwater
mussels and others). F-ORFs and M-ORFs, for example,
were predicted to interact with nucleic acids and/or
membranes (for signaling and/or interactions with the
immune system), and M-ORFs, in particular, were also
predicted to interact with the cytoskeleton and to have a
role in the ubiquitination processes [27, 28]. The high
variability of the ORFans among distantly related fam-
ilies and orders, however, questions their homology in
all DUI bivalves. To have a better understanding of
ORFans evolution and the functions of their encoded
proteins, efforts should focus on a taxon in which DUI is
widespread, such as the Unionida [2]. Until a few years
ago, only F, M, and H mt genomes from the family
Unionidae and a few F and H genomes of Margaritiferi-
dae were available, but recently mtDNAs from families
Hyriidae, Iridinidae, Mulleriidae, and the first margariti-
ferid M mtDNAs have been published [5, 29]. Given the
hypothesized, although still untested, link between
ORFans and sexual systems in freshwater mussels [3],
the sequencing of these new mt genomes allowed exam-
ination of the evolution of ORFan genes, DUI, and sex-
ual systems in a phylogenetic context [5]. It was
suggested that DUI may have been present as an ances-
tral state before the radiation of the order Unionida, and
that some ORFans have been partially or totally purged
from the remaining mtDNAs of some lineages that may
have lost DUI in their early stages of radiation (Iridini-
dae and Mulleriidae). However, the ORFans have been
maintained in the other families that regularly show DUI
(Hyriidae, Margaritiferidae, Unionidae), and in each of
these taxa, the mt genomes, especially the M, show their
own family-specific peculiarities. For example, in mar-
garitiferid M mtDNAs the M-orf is duplicated (one copy,
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M-orf1, appears to be homologous to the M-orf of
Unionidae and Hyriidae, while the second copy, M-orf2,
is specific to Margaritiferidae only), whereas the hyriid
M-orf is much longer than those of Margaritiferidae and
Unionidae [5].
In this study, we present eleven new mt genomes from

ten species of freshwater mussels, with or without DUI
and with different sexual systems (for each species, refer-
ences describing DUI status and/or reproductive modes
on which we relied for this study are given): Chambar-
dia rubens (Lamarck, 1819) [30, 31] for Iridinidae; Ano-
dontites elongata (Swainson, 1823) [32], Fossula
fossiculifera (d’Orbigny, 1835) [33], Lamproscapha ensi-
formis (Spix and Wagner, 1827) (C. Callil personal ob-
servation), Monocondylaea parchappii (d’Orbigny, 1835)
(C. Callil personal observation) for Mulleriidae; Castalia
ambigua Lamarck, 1819 [34, 35], Diplodon suavidicus
(Lea, 1856) [35], Prisodon obliquus Schumacher, 1817
[35], Westralunio carteri (Iredale, 1934) [36] for Hyrii-
dae; and Pseudunio auricularius (Spengler, 1793) [37]
for Margaritiferidae. First, we characterize the overall
structure of the new mt genomes and highlight their
unique features, some of which are described for the first
time, and we build a phylogeny of freshwater mussels
using these and other genomes. Then we identify new F-
orf and M-orf genes and describe the new F-ORF and
M-ORF proteins by comparing them to a set of already
published sequences, showing how, despite having
evolved different three-dimensional configurations, they
share some key features. Finally, considering our find-
ings, we discuss whether the DUI system works the same
way in all DUI freshwater mussels or if there may be
family-specific differences, as well as the modifications
occurring in the mtDNAs after DUI is lost.

Results
Sequencing, assembly, and general features of the new
mt genomes
We obtained a complete sequence for ten of the eleven
new mt genomes; the M mtDNA of W. carteri showed a
sequencing gap in a non-coding region between trnV
and trnH. All sequences were deposited in GenBank
under the accession numbers MK761136–46 (Table 1).
A summary of their length and a comparison of their
gene order are given in Table 2. In summary, they
present the same general features recently highlighted by
[5] (for families Iridinidae, Mulleriidae, Hyriidae, Mar-
garitiferidae) and [29] (for Margaritiferidae). As is typical
for DUI freshwater mussels, the cox2 gene carried by W.
carteri M mt genome is longer compared to its F coun-
terpart (respectively 1329 bp and 693 bp) and to those of
non-DUI species [6] (Table 3). Apart from the occa-
sional species-specific difference in length of some non-
coding regions, particularly in Hyriidae (i.e., between
atp8 and nad4L in D. suavidicus, and between trnV and
trnH in W. carteri M mtDNA) and Iridinidae (1049 bp
between nad5 and trnF in C. rubens, compared to the
23-76 bp of the other species mtDNAs), the most not-
able features lie in the presence/absence of ORFans, on
which we will focus.

Phylogeny of freshwater mussel mt genomes
A Bayesian inference analysis was performed with
MrBayes [38] on 12 protein coding genes and their
respective protein sequences extracted from the new
11 mt genomes, from 51 additional mtDNAs of
freshwater mussels available in GenBank (25 F, 22 M,
and other 15 mtDNAs from non-DUI species; Add-
itional file 1: Table S1), and from three outgroup

Table 1 Summary of the newly sequenced species and their mt genomes

Family Species Country Latitude Longitude Sexual system GenBank accession numbers

non-DUI F M

Iridinidae Chambardia rubens Mauritania 16.33880 −11.97809 dioecious MK761138

Mulleriidae Anodontites elongata Brasil −14.67936 −56.23611 dioecious MK761136

Fossula fossiculifera Brasil −14.67936 −56.23611 dioecious MK761140

Lamproscapha ensiformis Brasil −16.00573 −55.90867 unknown MK761141

Monocondylaea parchappii Brasil −14.67936 −56.23611 hermaphroditic MK761142

Hyriidae Castalia ambigua Brasil −14.67936 −56.23611 dioecious MK761137

Diplodon suavidicus Brasil −6.018083 −60.194306 unknown MK761139

Prisodon obliquus Brasil −6.018083 −60.194306 unknown MK761143

Westralunio carteri Australia −33.30210 115.81770 dioecious MK761145 MK761146

Margaritiferidae Pseudunio auricularius France 47.01710 0.56310 dioecious MK761144

For each species for which at least one mt genome sequence was obtained in this study (either complete or largely complete), the respective family, and the
provenance of the specimen(s) used for the sequencing (columns ‘Country’, ‘Latitude’, ‘Longitude’) are indicated, as well as the respective sexual system. For each
mtDNA sequenced, its type is specified: non-DUI., mtDNA of dioecious or hermaphroditic species with no evidence of DUI presence or secondary loss; F and M,
female- and male-transmitted mtDNAs of dioecious DUI species, respectively. The only available mtDNA of Pseudunio auricularius, a dioecious species for which no
evidence of DUI has been produced yet (no M mtDNA sequence available yet), which carries an F-orf, has been considered as F for simplicity
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species (the bivalves Neotrigonia margaritacea and
Solemya velum, plus a member of the Caudofoveata,
Chaetoderma nitidulum). The evolutionary models
calculated for the aligned and trimmed gene se-
quences were ‘GTR + G’ for nad4L and ‘GTR + I + G’
for all others. The most supported model for the
trimmed protein alignment was ‘Jones’ (posterior
probability = 1.000). The nucleotide- and amino acid-
based phylogenetic reconstructions reached conver-
gence (standard deviation of split frequencies
stabilized at values < 0.01) respectively after 39,000
and 17,000 generations.
In the nucleotide-based tree (Fig. 1), freshwater mussel

mtDNAs form a monophyletic group divided in two main
branches: one containing all M mtDNAs and another con-
taining all female-transmitted ones, from both DUI and
non-DUI taxa. Relationships among DUI species in these
two main branches are maintained in most cases, i.e. the
phylogeny of F mt genomes mirrors that of M ones. In the
few cases where this situation does not occur, either the
nodes usually have posterior probabilities < 1.000 (e.g., see
the different relative position of Aculamprotula tortuosa
mt genomes in the Unionidae clades) or the number of F
and M genomes for a taxon is different (e.g., Margaritiferi-
dae). In both of the two main branches, family Hyriidae is
sister group to Margaritiferidae and Unionidae, which al-
ways form reciprocally sister groups. For Hyriidae clades,
W. carteri mt genomes are always sister to the respective
Echyridella menziesii ones. In Margaritiferidae, P. auricu-
larius female-transmitted mtDNA is sister to Pseudunio
marocanus F mtDNA. Iridinidae and Mulleriidae form a
single branch sister to Hyriidae + Margaritiferidae +
Unionidae female-transmitted mtDNAs, where Mullerii-
dae form a monophyletic clade but Iridinidae do not: C.
rubens is sister to all Mulleriidae (node posterior probabil-
ity = 0.983), while the other iridinid Mutela dubia is sister
to all. Inside Mulleriidae, the dioecious [32] A. elongata is

recovered as distantly related to the congeneric hermaph-
rodite [39–41] Anodontites trapesialis.
The main difference of the protein-based tree (Fig. 2)

with the nucleotide-based one is the position of the M
mtDNAs clade: here, it is sister to a clade containing N.
margaritacea mtDNA as sister to all female-transmitted
mt genomes of freshwater mussels. Minor differences
with the nucleotide tree are as follows. In the female-
transmitted mtDNAs clade: for Hyriidae, W. carteri F
mtDNA is sister to all other hyriid female-transmitted
mt genomes; for Unionidae, Lanceolaria lanceolata F
mtDNA has a different position; in the Mulleriidae + Iri-
dinidae clade, the positions of C. rubens and M. dubia
are switched, with M. dubia here sister to all Mulleriidae
(node posterior probability = 0.739). The M mt genomes
clade differs from the nucleotide tree in the following in-
stances: Margaritiferidae M mtDNAs have different rela-
tionships; in Unionidae, Aculamprotula tortuosa M
mtDNA and Schistodesmus sp. [42] M mtDNA exchange
positions, and Sinanodonta woodiana M mtDNA and
Anodonta anatina M mtDNA become sister groups.

Search and annotation of ORFan genes
To search for new ORFan genes, a set of 35,032 open
reading frames (ORFs) (Table 4) was extracted from the
new mt genomes in Table 1 and the additional 51
mtDNAs of freshwater mussels from GenBank (Add-
itional file 1: Table S1), for a total of 62 mt genomes an-
alyzed. Using as a criterion of choice the level of
similarity between the known ORFan proteins and the
translated proteins of the nucleotide sequences in the
ORFs set, we found with the HMMER [43] suite of pro-
grams 25 F-orfs, 5 H-orfs, and 26M-orfs, three of which
are M-orf2 from Margaritiferidae species [5] and one ap-
pears to be a recent duplication specific to the unionid
S. woodiana (we named the two copies M-orfa and M-
orfb; see also [12]) (Additional file 1: Tables S2 and S3).

Table 3 Cox2 gene length variability in freshwater mussels

Family mtDNA Number
of cox2
analyzed

Length (bp)

transmitted by total number minimum maximum mean SD

Iridinidae eggs 2 2 681 681 681.0 0.0

Mulleriidae eggs 5 4 681 681 681.0 0.0

Hyriidae eggs 5 5 681 693 683.4 4.8

sperm 2 2 1329 1380 1354.5 25.5

Margaritiferidae eggs 7 7 600 693 672.4 29.9

sperm 3 3 1215 1224 1218.0 4.2

Unionidae eggs 21 21 681 684 681.1 0.6

sperm 17 17 825 1272 1193.2 130.8

Range, mean, and standard deviation (SD) of the cox2 gene length in egg- and sperm-transmitted mtDNAs in different freshwater mussel families. Sperm-
transmitted mtDNAs are present only in families showing DUI. Uniparental transmission of mtDNA through female gametes is assumed in Iridinidae and
Mulleriidae, which do not show DUI. In Mulleriidae, the partially sequenced cox2 gene from Anodontites trapesialis was excluded from this analysis; however, it
does not show the typical 3′ elongation of M cox2 genes [5]
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The nucleotide sequences of these 56 ORFans are listed
in Additional file 2. In summary, single ORFan protein
sequences used as seeds mainly recognized homologous
ORFan sequences, with few non-ORFan hits (as in the
case for E. menziesii M-ORF which recognized some full,
in-frame nad4L sequence) (Additional file 1: Table S2).
The F-ORF Hidden Markov Model (HMM) profile we

used recognized, in addition to all sequences from which
it was assembled, also the H-ORFs (Additional file 1:
Table S3). The M-ORF HMM profiles recognized all the
M-ORFs forming them, plus, with lower scores and E-
values, some protein translated from ORFs overlapping
trnD, atp8 (in two cases the hit comprised the whole in-
frame sequence of its protein), nad6, and nad4L genes

Fig. 1 Bayesian inference phylogenetic tree of freshwater mussel mt genomes based on nucleotide sequences from 12 of their protein coding
genes (atp8 was excluded). All nodes have posterior probability 1.000, except where indicated. An arrow indicates the split of freshwater mussel
M mtDNAs clade. Clades and groups of mtDNAs are color coded according to the family and/or type of mtDNA indicated on the right side of
the figure. The new mtDNAs sequenced in this study are in bold character
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of many mt genomes (Additional file 1: Table S3). The
putative proteins from the AtraUR219 and AtraUR2218
ORFans of A. trapesialis, located between atp8 and
nad4L of this species mt genome (Fig. 3) (which have
been proposed to have originated from duplication and
divergence of atp8 and might be related to M-orfs of
DUI species [5]), have no apparent homologs in other

species. However, some ORFs from other species were
retrieved that overlap the same region where the two A.
trapesialis ORFans are located and from which are hy-
pothesized to have originated: among these hits, for ex-
ample, four include either a segment of the atp8 gene or
its full in-frame sequence (Additional file 1: Table S4).
In short, as shown also in Fig. 3, we found that: (1) all

Fig. 2 Bayesian inference phylogenetic tree of freshwater mussel mt genomes based on protein sequences translated from 12 of their protein
coding genes (atp8 was excluded). All nodes have posterior probability 1.000, except where indicated. An arrow indicates the split of freshwater
mussel M mtDNAs clade. Clades and groups of mtDNAs are color coded according to the family and/or type of mtDNA indicated on the right
side of the figure. The new mtDNAs sequenced in this study are in bold character
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DUI species of freshwater mussels analyzed carry a F-orf
in their F mtDNA and at least one M-orf in their M; (2)
secondarily hermaphrodite (i.e., that switched from
gonochorism to hermaphroditism) species of Unionidae
and Margaritiferidae that lost DUI always possess a H-
orf [3]; (3) species that do not show evidence of DUI
(i.e., no evidence of heteroplasmy) from families Iridini-
dae, Mulleriidae, and Hyriidae have none of these
ORFans. The only mtDNA we retrieved from P. auricu-
larius presents a standard F-orf, and given that this spe-
cies is dioecious, it is plausible it will be revealed as a
DUI species, and therefore we treated this genome as F
mtDNA.

Sequence-based analyses of ORFan protein products
The amino acid composition of F-ORFs appears to be ra-
ther homogeneous among families, with no clear differ-
ences and, although more variable, a general trend is
observable also in the M-ORFs (Fig. 4). For Margaritiferi-
dae, in some cases, the distribution of some amino acid
percentage of M-ORF2 proteins (which do not have a
homolog in Hyriidae or Unionidae; Fig. 3), differ distinctly
from the M-ORF1 and fall outside the range of other M-
ORFs. The patterns for AtraUR219 is distinct from those
of all M-ORFs but only in terms of sheer percentage of

amino acid usage, as the peaks and declines of its pattern
are located in the same position as the M-ORFs. On the
contrary, AtraUR2218 profile is quite different and does
not follow that of the other proteins; however, this may be
an effect of its extremely short length (22 aa).
Both the CLANS [44] analyses (Fig. 5) and the max-

imum likelihood (ML) trees (Fig. 6) tend to separate F-
ORF and M-ORF protein sequences in family-specific
clusters: notably, the relationships among single ORFans
in the ML trees broadly resemble those among their re-
spective mt genomes in our phylogenies based on 12
protein-coding genes (Figs. 1 and 2), especially in the
case of F-ORFs. For Margaritiferidae M-ORFs, it is not-
able to see how M-ORF2 sequences cluster together with
the M-ORF1 sequences in the CLANS analysis (Fig. 5),
but form a separate branch in the ML tree (which has,
however, low resolution) (Fig. 6). We also attempted to
add AtraUR219 and AtraUR2218 sequences to the M-
ORF alignment for the ML reconstruction, but this dis-
rupted the clustering of M-ORFs, especially for the more
numerous Unionidae (not shown).

Tertiary structure prediction of ORFan proteins
Currently, there are no data derived from crystallo-
graphic studies on the ORFan proteins, nor established

Table 4 ORFs dataset description

Family Number of species mtDNA type Number of mtDNAs Number of ORFs F-orf M-orf H-orf

Iridinidae 2 non-DUI 2 1206 0 0 0

Mulleriidae 5 non-DUI 5 2820 0 0 0

Hyriidae 5 F 2 1063 2 0 0

M 2 1099 0 2 0

non-DUI 3 1668 0 0 0

all 7 3830 2 2 0

Margaritiferidae 7 F 6 3273 6 0 0

M 3 1657 0 6 0

H 1 556 0 0 1

all 10 5486 6 6 1

Unionidae 21 F 17 9698 17 0 0

M 17 9826 0 18 0

H 4 2166 0 0 4

all 38 21,690 17 18 4

all F 25 12,367 25 0 0

all M 22 12,582 0 26 0

all H 5 4389 0 0 5

all non-DUI 10 5694 0 0 0

Total 40 62 35,032 25 26 5

For each taxonomic group of freshwater mussels, the number of species and mtDNAs considered in this study are given, as well as the number and kind of
ORFans (F-, M-, or H-orfs) retrieved from them. mtDNA types: F and M, female- and male-transmitted mtDNAs of dioecious DUI species, respectively; H, mtDNA of
stably hermaphroditic species that lost DUI sensu [3]; non-DUI, mtDNA of dioecious and hermaphroditic non-DUI species. mtDNAs of dioecious species carrying an
F-orf but for which no evidence of DUI has been produced yet, or of dioecious DUI species that can show occasional hermaphroditism, were considered as F
for simplicity
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structural similarities with known proteins in databases,
that may guide bioinformatic analyses aimed at predict-
ing the ORFan proteins folding. Therefore, for complete-
ness, we decided to show the best results we obtained
with I-Tasser [45] regardless of the C-scores assigned to
the models: C-scores are usually comprised between − 5
and 2, therefore higher values indicate higher confidence
of the model. The predicted tertiary structure of some
selected ORFan proteins may appear to be highly differ-
ent at first sight, but similarities among proteins of the
same kind can be recognized (Figs. 7 and 8). A common
feature between the F-ORFs of Hyriidae and Unionidae
is the presence of two antiparallel helices separated by a
loop. This conformation is not found in the F-ORF of
Margaritiferidae, in which only one small helix is pre-
dicted (preceded by a small beta strand in Cumberlandia
monodonta and Pseudunio marocanus but not in Mar-
garitifera margaritifera). Hyriidae M-ORF, Margaritiferi-
dae M-ORF1 and M-ORF2, and S. woodiana M-ORFa all
share the presence of three antiparallel helices in their
N-terminus. The three helices have the same relative
orientation, but the third one is in front of the first two
in Hyriidae and behind them in Margaritiferidae and S.
woodiana (and it is also much smaller in this species).

The portion beyond this third helix varies for each spe-
cies, but, for example, Hyriidae M-ORFs are similar in
this part of the protein and are clearly discernible from
those of Margaritiferidae, and M-ORF1s and M-ORF2s
of this family are again distinguishable between them.
Cumberlandia monodonta M-ORF1 structure is less de-
fined compared to the homologous proteins from M.
margaritifera and P. marocanus, and in its M-ORF2, the
third helix appears to be on the same plane as the other
two. The three Unionidae M-ORFs examined have ex-
tremely divergent configurations, and no obvious simi-
larities can be recognized among them. The two S.
woodiana M-ORFs, most probably the product of a du-
plication event specific to this species [12], do not re-
semble one another. AtraUR219 protein is constituted
by a short N-terminal beta strand, two helices crossing
each other and connected by a simple loop, and a small
C-terminal beta strand. AtraUR2218 protein is very
short (22 aa) and it is predicted to be only a single helix.

Three-dimensional alignments of ORFan proteins
Summarized statistics for pairwise three-dimensional
(3D) alignments of the ORFan protein models are shown
in Table 5. In the pairwise interspecies 3D alignment for

A. trapesialis 

Hyriidae
DUI species F

DUI species M

non-DUI species

DUI species F

DUI species M

DUI species F

DUI species M

Margaritiferidae

all spec ies

other species

Unionidae

hermaphrodite species H

hermaphrodite species H

Mulleriidae

Iridinidae

S. woodiana M

atp6 D atp8 nad4L

atp6 D atp8 nad4L

atp6 D atp8 nad4L

atp6 D atp8 nad4L

atp6 D atp8 nad4L

atp6 D atp8 nad4L

atp6 D atp8 nad4L

atp6 D atp8 nad4L

atp6 atp8 D

atp6 atp8 D M-orf nad4L

atp6 atp8 D M-orf1 nad4LM-orf2

nad4L

atp6 atp8 D M-orf nad4L

atp6 atp8 M M-orfb nad4LM-orfa

AtraUR2218 AtraUR219 nad2 E

nad2 E

nad2 E

nad2 EF-orf

nad2 E

nad2 E

nad2 EF-orf

nad2 E

nad2 EH-orf

nad2 EF-orf

nad2 E

nad2 EH-orf

D nad2 E

Fig. 3 Schematic organization of the atp6-nad4L and nad2-trnE regions of the freshwater mussel (Unionida) based on mt genomes presented in
this study and of already published ones. Sample size for each family: 2 Iridinidae (all non-DUI), 5 Mulleriidae (all non-DUI), 7 Hyriidae (2 F, 2 M, 3
non-DUI), 10 Margaritiferidae (6 F, 3 M, 1 H), 38 Unionidae (17 F, 17 M, 4 H). GenBank accession numbers of the mt genomes used are enlisted in
Table 1 and Additional file 1: Table S1. Standard mitochondrial genes are in grey, while ORFan genes (see the main text for a complete
description of these genes) are colored following this code: green, Anodontites trapesialis specific ORFans; blue, M-orfs; pink, F-orfs; light pink, H-
orfs. Genes are pointed according to their relative direction on the mtDNAs. tRNA genes are indicated with the one-letter code of their respective
amino acid. Dotted lines represent the segments between the two regions, which are not indicated for simplicity. Sinanodonta woodiana
annotation is based on [12] and on the current study
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each single freshwater mussel family, the distances
(expressed as root mean square deviation of distances)
between Cα and between Cß atoms (respectively the α-
and ß-carbon atoms of an amino acid) tend to be lower
in the M-ORF alignments (for Unionidae, only the
Venustaconcha ellipsiformis M-ORF vs S. woodiana M-
ORFa comparison) compared to the F-ORF ones, while
percentages of aligned amino acids and secondary struc-
tures vary depending on the family and the ORFan pro-
teins considered. Margaritiferidae M-ORF1 and − 2
pairwise alignments, both in between-species and in
single-species comparisons, on average obtain relatively
good (and in some cases better) values compared to the
separate M-ORF1 and M-ORF2 alignments. The protein
encoded by the recently duplicated M-orfb in S. woodi-
ana appears to be rather distant in structure and se-
quence from the same species M-ORFa and V.
ellipsiformis M-ORF. When aligning homologous ORFan

proteins from different families, the best overall Cα and
Cß atoms distance values and identity scores for the F-
ORFs are those from the Unionidae versus Margaritiferi-
dae comparisons. Hyriidae and Unionidae M-ORFs and
Margaritiferidae M-ORF1 obtain similar, if not identical,
Cα and Cß atoms distances results when compared
among them in all combinations. These values are
slightly higher when considering Margaritiferidae M-
ORF2 sequences versus Hyriidae and Unionidae M-ORFs
and, while the sequence identity of aligned amino acids
tends to be higher for M-ORF1, the identity of aligned
secondary structures is higher for M-ORF2 than that of
M-ORF1 in the same comparisons.
Multiple 3D alignments of ORFan proteins proved

challenging for all groups we considered, i.e. all F-ORFs,
all M-ORFs, and only Margaritiferidae M-ORFs (for the
M-ORFs, we also tried to include the A. trapesialis pro-
teins into the alignments). Only for a few combinations

AtraUR219 [N=1]          AtraUR2218 [N=1]          Hyriidae [N=2]

Margaritiferidae M-ORF1 [N=3]          Margaritiferidae M-ORF2 [N=3]          Unionidae [N=18]
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%

%

Fig. 4 Percentage amino acid composition of the ORFan proteins considered in this study (their relative nucleotide sequences are enlisted in
Additional file 2). The sample size for each boxplot is indicated inside the legends in square parentheses as ‘N’. Amino acid names are indicated
with the IUPAC three-letter and one-letter codes
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of sequences the alignment could successfully produce a
tree but, because of the low number of sequences avail-
able, the trees did not show any informative clear-cut
clustering patterns that could split the proteins into, for
example, family-specific (e.g., Hyriidae vs Margaritiferi-
dae vs Unionidae) or kind-specific (e.g., Margaritiferidae
M-ORF1 vs M-ORF2) patterns as in the sequence-based
analyses.

Discussion
The deep relationships among freshwater mussel families
have long been debated [46] but, although mt genomes
from the sixth family Etheriidae are at present still not
available, the phylogenies presented here support a sister
group relationship between Hyriidae and Margaritiferidae
+ Unionidae, and an equally strict relationship between
Mulleriidae and Iridinidae, although not well resolved:
comparable family-level topologies were also found by
other recent studies [5, 42, 46] using different analytical
methods and/or taxa. Such topology supports an early
classification by [47] that splits freshwater mussels in two
superfamilies, Unionoidea (Unionidae + Margaritiferidae
+ Hyriidae) and Etherioidea (Mulleriidae + Iridinidae +
Etheriidae). In the light of our and the other mentioned
results [5, 42, 46], and as properly discussed by [46], the
separation in these two major taxa better reflects the

monophyly of shared characters among families than
others that introduce a third superfamily, Hyrioidea, for
Hyriidae only (as in [5]). It is worth noting how the
female-transmitted mt genomes of Unionoidea, the super-
family where DUI is common, form a single clade sister to
one containing mtDNAs of the non-DUI superfamily
Etherioidea. This, however, does not imply that DUI was
present only in the common ancestor of the Unionoidea.
Indeed, the variable position of the M mtDNAs clade sug-
gests the presence of DUI either in the last common an-
cestor of all freshwater mussels (Fig. 1) or even earlier,
before the split between orders Unionida and Trigoniida,
represented by the species N. margaritacea (Fig. 2). This
is because when speciation occurs after DUI appears, F
and M genomes evolve according to a “sex-associated”
phylogenetic pattern [48] in two distinct clades and, inside
these two clades, the relationships among mtDNAs of the
various species are the same. Our phylogenies, therefore,
suggest that (1) DUI was lost by Iridinidae and Mullerii-
dae, as well as by the South American lineage of Hyriidae
(as discussed in detail below), and (2) that at least the last
common ancestor of all Unionida had DUI. Comparable
phylogenies were already retrieved with different methods
and taxa [5, 42, 46] and, although the mt genomes se-
quenced in this study largely follow already described ar-
chitectures [5, 29] (Fig. 3), we observed new interesting

M-ORF

Unionidae       Hyriidae       Margaritiferidae M-ORF1       Margaritiferidae M-ORF2       AtraUR219       AtraUR2218

Unionidae           Hyriidae           Margaritiferidae

F-ORF

Fig. 5 Summary of the CLANS analysis for F-ORFs and M-ORFs. Because the original CLANS output is a three-dimensional space, here are shown
the three two-dimensional faces of the cube (one for each possible couple of axis: X vs Y, Z vs Y, Z vs X) obtainable by rotating the three-
dimensional space of each analysis with 90° movements on one axis. The ‘+’ inside each panel represents the center of the cube. Each dot
represents a single protein sequence (color code in the legends)
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features that help us reconstruct the evolution of fresh-
water mussel mt genomes and their relationship with
DUI.
Starting with family Mulleriidae, the four new mtDNAs

have no trace of rearrangements that are reminiscent of the
ORFans AtraUR219 and AtraUR2218 found in A. trapesia-
lis (Table 2, Fig. 3), which were hypothesized to be early
versions of M-orfs [5]. The structure of Mulleriidae mt ge-
nomes, therefore, makes them much more similar to Iridi-
nidae mtDNAs, which also lack additional ORFans between
atp8 and nad4L (Table 2, Fig. 3). This can be interpreted as
evidence for negative selection against the rise of novel

coding sequences in both families Iridinidae and Mullerii-
dae. It is however notable how the two mentioned ORFans
are present only in A. trapesialis, sister species to all other
Mulleriidae in our phylogenies (Figs. 1, 2 and 3). Until fur-
ther studies, this might indicate an independent and rela-
tively recent genomic rearrangement in A. trapesialis giving
rise to its two ORFans: therefore, future works investigating
ORFans evolution should consider the possibility that both
AtraUR219 and AtraUR2218 may be relicts of a species-
specific duplication event, unrelated to M-orfs of other DUI
families and possibly non-functional. Also, the selection
against new sequences may not be correlated to the sexual

Fig. 6 Unrooted maximum likelihood (ML) trees for F-ORF and M-ORF proteins of freshwater mussels. Color code for each family are indicated
inside the panels. Bootstrap values are indicated at each node
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system of these species, as both dioecious (A. elongata, F.
fossiculifera, C. rubens) and hermaphroditic (M. parchappi)
ones (Table 1) seem subject to it. For Iridinidae, C. rubens
mtDNA also confirms that the non-coding region between
nad5 and trnF is unusually large compared to other fresh-
water mussel families [5]: whether it is a control region
containing regulative motifs not found in other freshwater
mussels will be a matter for future studies. Finally, the rela-
tionships among the examined Iridinidae and Mulleriidae
species obtained from our phylogenies do not help in solv-
ing the history of their mt genome architectures. The two
families, although strictly related, do not form separate
monophyletic clades, and the two congeneric species A. tra-
pesialis (hermaphrodite [39–41]) and A. elongata (dioecious
[32]) are distantly related (Figs. 1 and 2): whether this situ-
ation calls for taxonomic revisions or not should be a mat-
ter for further ad hoc studies.
The new Margaritiferidae female-transmitted mt gen-

ome of P. auricularius has an F-orf, as previously

described for this taxon [3, 5, 29] (Table 2, Fig. 3), and is
strictly related to F mt genomes: further studies are
surely needed to fully confirm the presence of DUI in
this species, but the available evidence points to this dir-
ection. The re-analysis of published Unionidae mt ge-
nomes allowed us to confirm a recent species-specific
duplication of the M-orf in S. woodiana M mtDNA, as
noted by [12] (Fig. 3). We are unable to say what effects
(if any) this mutation may have caused to S. woodiana
DUI system, but our results suggest that the M-orfa (im-
mediately upstream of nad4L) is the one more similar to
those of other Unionidae, while M-orfb (immediately up-
stream of trnD) appears different, although still
recognizable as an M-orf. This feature of S. woodiana
and the previously described rearrangements in A. trape-
sialis support the idea that the atp8-nad4L region in the
mtDNAs of freshwater mussels is a hotspot for signifi-
cant rearrangements and gene duplications, therefore of-
fering additional support to the hypothesis for which the

Hyriidae F-ORF Unionidae F-ORF

Echyridella menziesii
88 aa, C-score: -4.14

Westralunio carteri
103 aa, C-score: -4.07

Venustaconcha ellipsiformis
89 aa, C-score: -3.89

Sinanodonta woodiana
86 aa, C-score: -4.14

Margaritiferidae F-ORF

Cumberlandia monodonta
91 aa, C-score: -4.18

Margaritifera margaritifera
110 aa, C-score: -4.11

Pseudunio marocanus
107 aa, C-score: -4.31

Fig. 7 3D models of representative F-ORF proteins of DUI freshwater mussels. The models shown are the first of the top five predicted by I-
TASSER for each sequence. Number of amino acids (aa) of each protein and C-score of the models are indicated under the relative species
names. C-scores are usually comprised between − 5 and 2: higher values indicate higher confidence of the model. The color shading of each
protein goes from the blue of the N-terminus to the red of the C-terminus
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Anodontites trapesialis Hyriidae M-ORF

Unionidae M-ORF

Margaritiferidae M-ORF

Echyridella menziesii
315 aa, C-score: -2.85

Westralunio carteri
248 aa, C-score: -3.16

AtraUR219
67 aa, C-score: -2.93

AtraUR2218
22 aa, C-score: -0.12

Cumberlandia monodonta (1)
96 aa, C-score: -1.04

Cumberlandia monodonta (2)
127 aa, C-score: -3.66

Margaritifera margaritifera (1)
96 aa, C-score: -3.51

Margaritifera margaritifera (2)
117 aa, C-score: -3.22

Pseudunio marocanus (1)
97 aa, C-score: -3.64

Pseudunio marocanus (2)
130 aa, C-score: -3.24

Venustaconcha ellipsiformis
226 aa, C-score: -1.56

Sinanodonta woodiana (a)
221 aa, C-score: -3.82

Sinanodonta woodiana (b)
169 aa, C-score: -3.85

Fig. 8 3D models of the proteins encoded by Anodontites trapesialis ORFans and of representative M-ORF proteins of DUI freshwater mussels. The
models shown are the first of the top five predicted by I-TASSER for each sequence. Number of amino acids (aa) of each protein and C-score of
the models are indicated under the relative species names. C-scores are usually comprised between − 5 and 2: higher values indicate higher
confidence of the model. The color shading of each protein goes from the blue of the N-terminus to the red of the C-terminus
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unionid M-orf may have originated from a duplication of
atp8 [5, 28].
The mtDNAs of the only dioecious species of Hyrii-

dae in this study showing DUI, W. carteri, are com-
parable in all aspects to those of the previously
sequenced DUI species E. menziesii [5], a strictly re-
lated species with the same Australasian distribution.
In particular, both the M-orf and the cox2 in the M
mtDNA are confirmed to be longer in this family
compared to the others (Table 3). The other three
Hyriidae species, C. ambigua, D. suavidicus, P. obli-
quus (all from South America and always forming a
single monophyletic clade; Table 1, Figs. 1 and 2), did
not show evidence of DUI and, contrary to DUI
gonochoric and DUI-less hermaphroditic unionids and
margaritiferids, their F-like mtDNAs do not possess
any F-orf or H-orf, and we did not find evidence of
their translocation in the unassigned regions of these
mt genomes (Table 2, Fig. 3). Even if the sex deter-
mination system is known only for C. ambigua, a
gonochoristic DUI-less species, we can propose a
working hypothesis stating that, in Hyriidae, losing
DUI (1) may always cause the complete disappearance

of the F-orf in the former F mtDNA (as in C. ambi-
gua, D. suavidicus, P. obliquus), and (2) may not
affect the gonochoristic sexual system (as in C. ambi-
gua). In this family, similarly to Mulleriidae and Iridi-
nidae which are hypothesized to have lost DUI in the
early stages of their radiation [5], it seems therefore
that the relationship among DUI, presence of ORFans,
and gonochorism may be somewhat different com-
pared to Unionidae and Margaritiferidae, which retain
a H-orf in their mt genomes after losing DUI [3]. The
parallelism between Hyriidae and Mulleriidae + Iridi-
nidae may, however, lead to another hypothesis: we
can see that among all Hyriidae species studied until
now, only the Australasian ones (E. menziesii, W. car-
teri) show DUI, while the Neotropical ones (C. ambi-
gua, D. suavidicus, P. obliquus) do not (Table 1). This
may hint that the last common ancestor for these
two lineages had DUI, which was lost (together with
the ORFan in the remaining F-like mtDNA) only in
the South American lineage during its radiation. Con-
sidering the current information from all families of
freshwater mussels, we can speculate that once DUI
and the M mtDNA are lost by a species, the ORFan

Table 5 Summary statistics of the pairwise 3D alignments performed with MATRAS

Families Proteins compared N Rdis (%) RMS (Å) DRMS (Å) SqID (%) Sec (%)

mean SD mean SD mean SD mean SD mean SD

Hyriidae F-ORF 1 4.50 n.a. 5.04 n.a. 3.38 n.a. 9.30 n.a. 46.50 n.a.

M-ORF 1 1.00 n.a. 4.11 n.a. 2.07 n.a. 5.10 n.a. 100.00 n.a.

Margaritiferidae F-ORF 3 7.50 4.16 8.98 4.13 5.11 0.68 13.20 7.28 92.43 7.92

M-ORF1 3 10.90 17.33 3.58 1.92 2.58 1.21 20.87 23.86 63.97 13.95

M-ORF2 3 9.67 7.11 5.35 3.84 3.53 2.29 14.23 5.66 83.37 5.70

all M-ORF1 x M-ORF2 9 7.29 9.22 3.05 1.13 2.21 0.81 17.12 11.84 71.82 19.55

single species M-ORF1 x M-ORF2 3 12.30 13.03 3.34 1.78 2.68 1.30 22.73 7.35 73.23 17.50

Unionidae F-ORF 1 4.10 n.a. 4.18 n.a. 2.76 n.a. 5.40 n.a. 70.30 n.a.

V. ellipsiformis M-ORF x S. woodiana
M-ORFa

1 0.40 n.a. 2.36 n.a. 1.22 n.a. 0.00 n.a. 77.30 n.a.

V. ellipsiformis M-ORF x S. woodiana
M-ORFb

1 5.20 n.a. 35.75 n.a. 34.40 n.a. 9.20 n.a. 86.20 n.a.

S. woodiana M-ORFa x M-ORFb 1 0.10 n.a. 3.75 n.a. 1.84 n.a. 0.00 n.a. 52.90 n.a.

Hyriidae x Margaritiferidae F-ORF 6 0.08 0.21 2.79 1.50 2.33 0.92 3.97 6.26 66.83 43.03

M-ORF x M-ORF1 6 0.45 0.28 3.50 3.40 1.85 1.62 8.77 9.03 76.22 16.18

M-ORF x M-ORF2 6 2.10 1.47 4.74 2.24 2.62 0.60 8.17 4.72 84.40 11.79

Hyriidae x Unionidae F-ORF 4 5.83 3.60 6.36 3.33 4.07 1.43 8.55 3.52 60.18 10.90

M-ORF 6 1.30 1.54 3.50 0.90 1.92 0.57 7.65 3.57 70.77 7.06

Unionidae x Margaritiferidae F-ORF 6 0.03 0.08 2.00 0.98 1.78 0.49 18.75 14.37 72.22 44.31

M-ORF x M-ORF1 9 0.33 0.39 2.50 1.42 1.90 0.82 11.01 9.32 67.89 27.66

M-ORF x M-ORF2 9 1.84 1.53 3.83 1.10 2.35 0.86 6.07 4.16 71.53 21.04

N Number of pairwise comparisons considered, Rdis Normalized Sdis score (%), RMS Root mean square deviation of Cα atoms location of aligned amino acids after
optimal superimposition (Å), DRMS Root mean square deviation of distances between Cß atoms of aligned amino acids (Å), SqID % of identical amino acid pairs
on the total number of aligned amino acids, Sec % of identical secondary structure residues on the total number of aligned amino acids, SD Standard deviation of
the mean for a given value (n.a. when N = 1)
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in the remaining F mtDNA (i.e. the F-orf) no longer
plays a role in the DUI mechanism and gradually dis-
appears. First, it may start to accumulate mutations
and degenerate (like the H-orf in Unionidae and
Margaritiferidae [3]) and then, given enough time, it
completely disappears from the mtDNA without leav-
ing recognizable traces (as in the South American
Hyriidae, which no longer carry traces of the F-orf;
Table 2, Fig. 3).
Despite very similar amino acid compositions (Fig. 4),

sequence-based analyses of ORFan proteins managed in
most cases to distinguish families (Figs. 5 and 6), with F-
ORFs giving better resolution compared to M-ORFs (as
in the ML analysis, for example). Following this lead, we
explored for the first time the total putative 3D folding
of freshwater mussels ORFan proteins (as secondary
structures and other features have been already thor-
oughly characterized [27, 28, 49]), to search for patterns
that could help unravel their evolutionary history. In-
deed, even if we sampled only a few representative spe-
cies, the predicted 3D foldings demonstrate how in each
family the F- and M-ORFs have their own peculiar shape
(Figs. 7 and 8). The tertiary structure of a protein is in-
fluenced by its amino acid sequence, and as a conse-
quence, the proteins of closely related species and/or
with a common origin exhibit comparable shapes. In
Margaritiferidae, for example, all M-ORF1 and M-ORF2
proteins fold in a similar way, and this finding could also
hint at a full functionality of the M-ORF2 protein in
DUI margaritiferids, possibly with a physiological role
comparable to that of M-ORF1 and other M-ORFs. In
contrast, in the case of Unionidae M-ORFs (Fig. 8), the
proteins exhibit a range of very divergent foldings; this
could be due to the method used, the phylogenetic dis-
tance among species (see their positions in the trees in
Figs. 1 and 2), or the exclusive evolutionary history of
each protein (as we discussed above for S. woodiana M-
ORFs). A broader sampling from each family and a com-
parison among different methods of tertiary structure
prediction in the future could help to better define these
ambiguous foldings, as well as to improve the distance
analyses that lacked resolution in the current study.
Nonetheless, despite the technical difficulties, our

explorative study presents evidence of possibly con-
served features among ORFan proteins of the same
kind, such as the relative arrangement of certain heli-
ces in F-ORFs and M-ORFs. These structural features,
together with properties already characterized (e.g., [5,
27, 28, 49]) and others yet to be discovered, will lead
us to give a precise physiological role to the ORFan
proteins and their respective genes (like those already
hypothesized before, for example [28]). With further
study, we might also be able to answer the long-
standing questions about the relationships among the

ORFan genes, the sex determination system, and the
peculiar mitochondrial inheritance mode of freshwater
mussels and of all other bivalves showing DUI [3].
However, given the rather different length and shape
of Hyriidae M-ORFs compared to those of Unionidae
and Margaritiferidae, and the fact that Hyriidae DUI-
less species are not always hermaphroditic (as C.
ambigua) and their mtDNA does not possess any F-
or H-orf (C. ambigua, D. suavidicus, P. obliquus), as
opposed to what occurs in Margaritiferidae and
Unionidae [3], we suspect that the nature of the link
among ORFans and sexual system may not be exactly
the same in all DUI freshwater mussels. On the other
hand, it is also possible that long evolutionary times
in the absence of DUI, as well as various ecological
pressures [50], may shape freshwater mussel mt ge-
nomes and/or sexual systems, leading to the situa-
tions described for the first time in this study (i.e., no
ORFan genes in both hermaphroditic and gonochoric
species). To answer these questions, a broader sam-
pling and in vivo studies on the ORFan proteins will
be needed.

Conclusion
In this study we produced ten entire, plus one almost
complete, new mtDNA sequences of freshwater mussel
species with or without DUI from still poorly sampled
families (Iridinidae, Mulleriidae, Hyriidae, and Margariti-
feridae). Besides being a useful basis for future sequen-
cing efforts, much needed for this group of endangered
animals [51], we provided new data on the mitochon-
drial ORFan genes of freshwater mussels, whose origin is
still unknown and whose function and conservation are
likely related to their sex determination system [3]. We
observed that the rearrangements occurring in mito-
chondrial genomes of species and lineages that second-
arily lost DUI (i.e., that lost their ancestral M mtDNA
and retain only a mutated F) are not always the same,
and that losing DUI is not always linked to a switch to
hermaphroditism. By analyzing the 3D structures of
their translated proteins, we also evidenced common
characteristics and similarities among them, hinting at
conserved physiological roles of F-orf and M-orf genes in
all DUI lineages of freshwater mussels, as well as family-
specific ones. We therefore questioned if the family-
specific structures of the ORFan proteins can influence
some detail of the DUI system in different manners, so
that the downstream effect of losing DUI on the sexual
system of a species may vary. An alternative, but not ne-
cessarily mutually exclusive, hypothesis we propose to
explain the observed differences among non-DUI line-
ages is that time and other factors may play an import-
ant role in reshaping both the mitochondrial genome
and sexual system of a species after it loses DUI.
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Methods
Sequencing of new mt genomes
Freshwater mussel species were selected across the main
families within the order Unionida and to cover distinct
sexual strategies, i.e. gonochorism and hermaphroditism
(Table 1). W. carteri specimens were taken from the wild
with permits for field and laboratory studies obtained
from the Western Australian Department of Environ-
ment and Conservation under Regulation 17 of the
Wildlife Conservation Act 1950 (SF007049) and Depart-
ment of Fisheries under Exemption from the Fisheries
Resources Management Act 1994 (1724–2010-06). Sex
of the specimens was determined by observing gonad
tissue smears for sexual cells and/or the demibranchs for
the presence of marsupia, using a dissecting microscope.
Tissue samples were excised from one specimen per spe-
cies, and placed in 100% ethanol for DNA extraction: for
all species, a foot clip was available for DNA extraction,
while for W. carteri an additional male gonad sample
from the same specimen was also used. DNA extraction
followed [52]. DUI presence or absence for every species
was assumed from previous studies [30–37]. The
complete mitogenomes sequencing and assemblage was
accomplished using the pipeline proposed by [53]. An-
notations were performed using MITOS [54] with the
final tRNA genes limits being rechecked with ARWEN
[55]. Finally, personal scripts were developed and applied
to adjust the mtDNA protein-coding limits since MITOS
seems to underestimate gene length (for details, go to
https://figshare.com/s/a756ef19cec8f65d506a).

Phylogenetic analyses of freshwater mussel mt genomes
The set of eleven new mt genomes (Table 1) was ex-
panded by adding other 51 freshwater mussel mt ge-
nomes from GenBank (see Additional file 1: Table S1 for
the complete list and details), for a total of 62 mtDNAs
for 40 species. The mt genomes added encompass fam-
ilies Iridinidae, Mulleriidae, Hyriidae, Margaritiferidae,
and Unionidae. For Hyriidae and Unionidae, we took the
mt genomes from DUI species for which both the F and
M mtDNAs were available (resulting in two mtDNAs
per species), for Margaritiferidae all F and M mt ge-
nomes available, and for Margaritiferidae and Unionidae
only also those from secondarily hermaphrodite species
(i.e., the H mtDNAs). The final set was thus composed
of 22M, 25 F, and 15 mt genomes from non-DUI spe-
cies, either secondarily hermaphrodite that lost DUI
(sensu [3]) or gonochoric ones. For the purpose of the
phylogenetic analyses, three outgroup species mt ge-
nomes were also used: the bivalves Neotrigonia margari-
tacea (Trigoniida) and Solemya velum (Solemyida), plus
Chaetoderma nitidulum (Caudofoveata, Chaetoderma-
tida) as outgroup to all bivalves (respective GenBank ac-
cession numbers: KU873118, JQ728447, EF211990). A

total of 65 mt genomes was therefore considered for the
phylogenies.
We extracted all protein coding gene sequences, ex-

cept atp8 because of its short length and high variabil-
ity, from the 65 mtDNAs and translated them with the
invertebrate mitochondrial genetic code to obtain the
relative protein sequences. The 12 protein sets were
then aligned with M-Coffee (http://tcoffee.crg.cat/apps/
tcoffee/do:mcoffee) [56, 57] using all multiple methods
available, then from these protein alignments we retro-
aligned the codons of the respective genes using the
TranslatorX server (http://translatorx.co.uk) [58]. Both
protein and codon alignments were trimmed on the
Gblocks server version 0.91b (http://molevol.cmima.
csic.es/castresana/Gblocks_server.html) [59, 60] using
the option for a more stringent selection. jModelTest2
[61, 62] was used to calculate, under the Bayesian Infer-
ence Criterion (BIC), the best-fit models of nucleotide
substitution for the trimmed codon alignments. Finally,
the two sets of trimmed alignments were concatenated
respectively into a codon alignment and an amino acid
alignment, with a respective length of 7914 and 2363
gapless positions. MrBayes 3.2.3 [38] was used to infer
amino acid- and nucleotide-base phylogenies of the mt
genomes. The analysis for both concatenated align-
ments consisted of two separate runs of four chains, 5,
000,000 generations, sampling every 100 trees with a
burn-in of 0.1%. In the nucleotide analysis, the models
retrieved with jModelTest2 were specified for each gene
partition, and a ‘4by4’ nucleotide substitution model
was adopted for the whole alignment. In the amino acid
analysis, a ‘mixed’ rate matrix was specified. Completed
runs were accepted for further examination after check-
ing that their standard deviation of split frequencies
stabilized at values < 0.01 over the generations (as in
[63]). jModelTest2 and MrBayes 3.2.3 were ran on the
CIPRES Science Gateway (http://www.phylo.org) [64].
Trees were graphically edited with FigTree v.1.4.3 [65].

Annotation of F- and M-orf genes
To locate the F- and M-orf genes in the DUI genomes in
which they were not annotated, and at the same time
validate previous annotations, we first used the EMBOSS
tool getorf [66] to extract all possible ORFs ≥30 nucleo-
tides long (i.e., coding at least 10 codons) under the in-
vertebrate mitochondrial genetic code from the 62
freshwater mussel mtDNAs dataset described above, and
then translated them into the corresponding proteins.
This set of protein sequences was first searched with the
HMMER tool jackhmmer [43] (10 iterations) using as
seeds the F-ORF of V. ellipsiformis and the M-ORFs of
E. menziesii, C. monodonta (M-ORF1) and V. ellipsifor-
mis, in separate runs. The proteins retrieved from each
run were then aligned with PSI-Coffee [56, 67] (http://
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tcoffee.crg.cat/apps/tcoffee/do:psicoffee; all pairwise
methods selected), and the alignments used to build
HMM profiles with hmmbuild [43] (options: -fast -sym-
frac 0 -fragthresh 0 -wnone -enone; see also [28]). These
profiles were used to search again the whole set of pro-
teins with hmmsearch [43] (−-max option active to allow
maximum sensitivity) to confirm the presence of F-orfs
and M-orfs previously found with jackhmmer, retrieve
the known ones not recognized by jackhmmer, and
search for new homologs of these genes. Finally,
phmmer [43] (−-max option active) was used to search
the protein set for homologs of the two proteins puta-
tively encoded by the two ORFans AtraUR219 and
AtraUR2218 in A. trapesialis (Mulleriidae) mtDNA, hy-
pothesized to be related to M-orf genes [5].

Sequence-based analyses of proteins
MEGA7 [68] was used to calculate the amino acid com-
position of F-ORFs, M-ORFs, and AtraUR219 and
AtraUR2218 of A. trapesialis. To visualize the relation-
ships among the already annotated and newly discovered
ORFan proteins based on pairwise similarity, we ran
CLANS [44]. Specifically, the CLANS program was con-
ducted online on the MPI Bioinformatic Toolkit website
[69] (https://toolkit.tuebingen.mpg.de/#/tools/clans) using
the BLOSUM45 scoring matrix and BLAST HSP’s E-
values up to 1E-4. The output was then run locally on the
CLANS application for ≥10,000,000 rounds to obtain reli-
able 3D clustering data. The alignments of the F-ORFs
and M-ORFs used to build their HMM models, plus an
alignment of the two A. trapesialis ORFan proteins and
the M-ORFs (constructed with PSI-Coffee as mentioned
above), were used to build ML trees in MEGA7 [68], using
1000 bootstraps, the ‘mtREV’ model of substitution, uni-
form rates among sites, and a gap partial deletion of 95%.
The trees were built unrooted because given the uncertain
origin of the ORFan genes it is not possible to choose a re-
liable outgroup sequence.

3D structure-based analyses of proteins
We used I-TASSER [45] online (https://zhanglab.ccmb.
med.umich.edu/I-TASSER/) to obtain the 3D models of
the F- and M-ORF of some representative DUI species
(Hyriidae: E. menziesii, W. carteri; Margaritiferidae: C.
monodonta, M. margaritifera, P. marocanus; Unionidae:
V. ellipsiformis, S. woodiana) plus AtraUR219 and
AtraUR2218 of A. trapesialis (Mulleriidae). The most
supported models (i.e., the ones with the best C-score)
were then used as input for MATRAS [70] (http://
strcomp.protein.osaka-u.ac.jp/matras/) to perform pair-
wise and multiple 3D alignments of the proteins. The
multiple alignments aimed at obtaining trees based on
DRMS (root mean square deviation of Cα atoms, mea-
sured in Å) distances among them, using as a minimal

set the ORFan proteins from E. menziesii, C. monodonta,
and V. ellipsiformis (which have been thoroughly charac-
terized in past studies [3, 5, 27, 28]) and adding as much
proteins as MATRAS would allow from the other spe-
cies. When an I-TASSER model made MATRAS fail in
producing a tree, we refined it with ModRefiner [71]
(https://zhanglab.ccmb.med.umich.edu/ModRefiner/)
and repeated the 3D alignment. If the refining did not
succeed in improving the results, the protein was re-
moved from the analysis.
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