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Abstract

Background: Skippers (Family: Hesperiidae) are a large group of butterflies with ca. 4000 species under 567 genera.
The lack of a time-calibrated higher-level phylogeny of the group has precluded understanding of its evolutionary
past. We here use a 10-gene dataset to reconstruct the most comprehensive time-calibrated phylogeny of the
group, and explore factors that affected the diversification of these butterflies.

Results: Ancestral state reconstructions show that the early hesperiid lineages utilized dicots as larval hostplants.
The ability to feed on monocots evolved once at the K-Pg boundary (ca. 65 million years ago (Mya)), and allowed
monocot-feeders to diversify much faster on average than dicot-feeders. The increased diversification rate of the
monocot-feeding clade is specifically attributed to rate shifts in two of its descendant lineages. The first rate shift, a
four-fold increase compared to background rates, happened ca. 50 Mya, soon after the Paleocene-Eocene thermal
maximum, in a lineage of the subfamily Hesperiinae that mostly fed on forest monocots. The second rate shift
happened ca. 40 Mya in a grass-feeding lineage of Hesperiinae when open-habitat grasslands appeared in the
Neotropics owing to gradual cooling of the atmospheric temperature.

Conclusions: The evolution of monocot feeding strongly influenced diversification of skippers. We hypothesize that

although monocot feeding was an intrinsic trait that allowed exploration of novel niches, the lack of extensive availability
of monocots comprised an extrinsic limitation for niche exploration. The shifts in diversification rate coincided

with paleoclimatic events during which grasses and forest monocots were diversified.
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Background

The remarkable diversity of life is often attributed to either
the gradual accumulation of species over long periods of
time [1, 2] or to dramatic changes in diversification rates
across lineages and time [3, 4]. However, paleontological
evidence [3] and phylogenetic comparisons [4] across the
tree of life predict the latter scenario as the major cause,
where the fluctuations in speciation and extinction rates
explain the historical pattern of lineage accumulation. A
major cause for these varying rates is rapid diversification
promoted by ecological opportunity (EO) [5-8]. EO is
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generated when a macroevolutionary process affects a
lineage in two ways: (i) the lineage evolves the ability to
utilize resources otherwise unavailable (by evolutionary
innovation; intrinsic factor), and (i) when new resources
become available to the lineage (by colonization or antag-
onistic extinction or in situ availability of new resource; ex-
trinsic factors) [5-9].

Many comparative studies have shown how rapid
diversification is associated with evolutionary innova-
tions ([7-9]; but see [10, 11]). Of particular note is
the evolution of herbivory, i.e., shifts from carnivory
to herbivory, which has repeatedly elevated diversifi-
cation rates [12, 13], and this is especially true in the
case of insects [13]. Indeed, herbivorous insects comprise
about half of all terrestrial eukaryotic species [13], exem-
plifying the importance of insect-plant interactions in
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generating the diversity of life [14—16]. Among butterflies,
major shifts in hostplant use have led to bursts in diversifi-
cation rates [17, 18]. For instance, Satyrini butterflies
(Subfamily Satyrinae: Tribe Satyrini), which specialise on
grasses and include ca. 2200 species, diversified simultan-
eously with the expansion of grasslands [19]. Therefore,
feeding on grasses appears to be closely associated with
increased diversification rate in Satyrini.

Paleontological records and comparative phylogenetic
analyses indicate that diversification of a taxon is often
associated with the extinction of others [20—22]. For in-
stance, nymphalid butterflies (Family Nymphalidae) radi-
ated immediately after the K-Pg extinction (~65 million
years ago (Mya)) [23]. Alternatively, in situ availability of
new resources can elevate diversification rates of the
lineage (see [7, 8]). For instance, paleoclimatic events
trigger the appearance and diversification of several
groups of animals and plants [24-27], which in turn
influence diversification of other taxa. Phytophagous
insects, for example, diversified following the evolution of
flowering plants ([22, 28]; but see [29, 30]). Furthermore,
colonization of a novel geographic area, newly formed
islands for instance, are often associated with increased
diversification [31-33].

Thus, evidence supporting the role of EO in accelerat-
ing diversification largely comes from analyses of distinct
macroevolutionary processes that represent either intrin-
sic or extrinsic factors. However, theory predicts that
both availability of resources due to extrinsic factors and
the intrinsic ability to utilize them are necessary to gen-
erate EO [7-9]. For instance, a lineage capable of utiliz-
ing a new but scarce resource may undergo rapid
diversification when those resources become abundant
in situ. Although intrinsic and extrinsic factors of EO
are often presented independently, their role in generat-
ing EO are not mutually exclusive; and, as the aforemen-
tioned predictions suggest, the factors promoting EO
may appear one after another over a phylogeny, but EO
is generated only when all the factors become available
to the lineage. However, this possibility is not explored
in detail for any group of organisms.

We here investigate the pattern of appearance of in-
trinsic and extrinsic factors of EO and their effect on di-
versification in a highly speciose but hitherto ignored
group of butterflies - the skippers (Family Hesperiidae).
The skippers comprise ca. 4000 species distributed
among ca. 567 genera [34]. About 50% of skippers feed
on monocots during larval stages. We compiled a 10-
gene dataset of 7726 bp (base pair) from 290 genera
representing all the known major clades. Based on esti-
mated times of divergence, we checked whether skippers
have experienced rapid shifts in diversification rates, in-
dicative of adaptive radiation(s). To test the hypothesis
that the rate shifts have occurred in response to
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ecological opportunity, we specifically investigate
whether (i) rate shifts are associated with feeding prefer-
ences of the lineages, (ii) the K-Pg extinction had an im-
pact on diversification rate, (iii) the diversification
pattern reflects the biogeographic distribution of line-
ages, and (iv) paleoclimate has influenced diversification
rate.

Methods

Phylogenetic and molecular dating analyses

We used a concatenated dataset of nine nuclear genes
and one mitochondrial gene for the divergence time esti-
mation. Our dataset was built upon the previous work
[34], to which we added 34 specimens, resulting in a
dataset of 290 genera that accounts for nearly 60% of
known skipper genera. Many skipper genera have highly
restricted distributions and comprise very few species,
making them logistically very challenging to sample.
Therefore, despite the massive field effort of several col-
laborators worldwide spanning more than a decade, we
were unable to achieve a more comprehensive sampling
of the taxa. However, we believe we have included repre-
sentatives of all the major clades.

A previous study [34] with 270 skipper samples
showed that there are two equally plausible topologies of
hesperiid relationships. Hence, we first investigated whether
the existence of the contrasting topologies (see [34]) has
any effect on the age estimates of its major clades. We used
105 branch-optimized trees obtained from independent
Maximum Likelihood (ML) analysis of the previously
published dataset [34] with gene partitions. We estimated
ultrametric trees using the PATHd8 method [35], which
uses the mean path length algorithm with correction for a
molecular clock, implemented in the program PATHdS8
v1.0 [35]; and assigned an arbitrary time unit of one
to the crown age of the ingroup to estimate relative
times of divergence for nodes. We then calculated the
distribution of relative age estimates of the deeper clades
from these ultrametric trees.

We used the software BEAST v2.4.2 [36] on the
CIPRES Science Gateway [37] to simultaneously esti-
mate phylogenetic relationships and times of divergences
for our current dataset. Sequences of two species from
Hedylidae, which is the sister family to Hesperiidae
[38], were acquired from Genbank and treated as out-
groups. We estimated the most appropriate partition-
ing scheme for the data matrix using TIGER v1.02
(Tree Independent Generation of Evolutionary Rates)
[39] and the nucleotide substitution models for the
partitions by PartitionFinder v1.1.1 [40]. We assumed
a relaxed clock model that allowed branch lengths to
vary as per an uncorrelated lognormal distribution,
and assigned a Birth-Death Process as the tree prior.
We assigned an exponential distribution of mean 10.0
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as the prior for the hyperparameter ‘ucldMean’. Priors
of all other parameters were kept at their default
values.

We used the previously estimated age ranges (81-114
Mya) [38] to calibrate the split between Hesperiidae and
Hedylidae (uniform distribution), along with a recently
described fossil [41] to constraint the minimum stem
age of Hesperiinae (25 Mya; log-normal distribution).
Posteriors of the parameters were estimated from two
independent runs of 50 million generations each. We
checked the convergence of independent runs from the
distribution of their log-likelihood scores using the pro-
gram Tracer v1.6 [42]. To confirm proper mixing of
samples from every generation, we checked the Effective
Sample Size of all parameters after discarding the initial
20% of trees as burnin. The tree files, after discarding
burnin, were combined using LogCombiner v2.4.5 and
the parameter values were annotated to the Maximum
Clade Credibility (MCC) tree using TreeAnnotater
v2.4.5 (a part of BEAST v2.4.5 package; [36]).

Diversification analysis

For subsequent analyses, we retained only one randomly
chosen representative species for each genus if multiple
species for that genus were available. We estimated
gamma (y) statistic [43] from the MCC tree using the R
(v3.2.3; [44]) package Laser v2.4.1 [45]. The gamma stat-
istic indicates whether internal nodes are closer to the
root (y < 0) or to the tips (y > 0) of the tree than expected
under a constant rate model (y = 0). We accounted for in-
complete taxon sampling by adjusting the critical value
for gamma using the Monte Carlo Constant Rates
(MCCR) test [43].

We generated a Lineage Through Time (LTT) plot
from the MCC tree. To evaluate the pattern of lineage
accumulation in the empirical LTT plot, we generated
1000 trees under the birth-death model with 290 taxa
using the R package TreeSim v2.2 [46]. These trees were
then used to construct a mean LTT curve with 95% confi-
dence interval and compared with the empirical LTT curve.
We evaluated the fit of the lineage accumulation on the
MCC tree to different models of diversification [47] using
hierarchical likelihood ratio test and Akaike Information
Criteria (AIC) in the R package Laser v2.4.1 [45].

We calculated the diversification rates of higher level
clades following the method-of-moments estimator for
stem-group ages [48] and checked using Phylogenetic
Generalized Least Squares (PGLS) [49] in the R package
APE v3.5 [50] whether clade age or diversification rate
predicts species richness. PGLS accounts for phylogen-
etic non-independence of clades while modeling regres-
sion between the parameters.

We employed the program BAMM v2.5.0 [51] to
model the diversification rate shifts. This is a Bayesian
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approach that describes the number and locations of
rate shifts as posterior distributions. We specified the
sampling probability as the proportion of representative
species in our dataset out of total known species in each
tribe or subfamily. To check for the prior sensitivity of
BAMM to the number of rate shifts detected, we per-
formed multiple BAMM analyses with varying priors
(1, 5 and 10) for expected rate shifts. We ran the
analyses for 5 million generations each and sampled
every 5000 generations. Since priors had little effect
on the results, we used one as the rate shift prior
during the final analysis, performed with four inde-
pendent chains of 20 million generations each and
sampled every 20,000 generations. After removing the
first 20% of generations as burnin, the number of rate
shifts and rate shift configurations were estimated
using the R package BAMMTtools v2.1.0 [52]. We note
that although BAMM is very popular, there has been
recent debate about the reliability of the method. In
particular, the likelihood function and the prior used
in BAMM have been argued to be flawed [53], but
[54] later argued that these problems do not apply to
most datasets. Rather than relying solely on BAMM,
we have adopted multiple modelling approaches and
we believe our results are robust to the potential
flaws of BAMM (see Discussion for more detail).

In another approach, we estimated trait-specific diver-
sification rates considering hostplants as binary charac-
ters - monocots or dicots. About 16% of the taxa in our
dataset feed on magnoliids or both monocot and dicot; we
assigned them as data unavailable. The character states for
each tip in the phylogeny were compiled from multiple
sources (Additional file 1: Appendix S1). We applied the
Binary State Speciation and Extinction model (BiSSE) [55]
in the R package diversitree v0.9.7 [56]. BiSSE calculates
speciation, extinction and transition rates for each
assigned character state. We accounted for the incomplete
sampling in our dataset by providing the total proportion
of missing taxa in our dataset. We used a uniform prior
probability and 10,000 MCMC steps to estimate the
posterior probability distribution of each parameter.

Nevertheless, the presence of unmeasured factors could
potentially influence the diversification pattern estimated
for the states of the observed trait over a phylogeny, and
hence can lead to erroneous inference when using SSE
(State dependent Speciation and Extinction) models
[57, 58]. Thus, we also tested whether shifts in diversifica-
tion rates correlate with the shift in feeding habit or any
unmeasuerd factors, by applying Hidden State Speciation
and Extinction model (HiSSE) [58].

Character mapping
We mapped the known biogeographic distribution of
the sampled taxa onto the phylogeny using the online
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tool Interactive Tree Of Life (iTOL) v3 [59]. For each
missing genus, we randomly assigned the distribution to
a sampled genus from the same tribe or subfamily. The
geographic range of genera was compiled from various
sources (Additional file 1: Appendix S1) and was divided
into six biogeographic regions — Neotropical, Nearctic,
Palearctic, Afrotropical, Oriental and Australian.

We also annotated the phylogeny with the larval hos-
tplant data of sampled genera using iTOL v3 [59] and
accounted for the hostplants of missing genera in the
manner as was done for geographic ranges above. Based
on information about larval hostplant use, we divided the
genera into three broad categories — dicots, monocots and
magnoliids. Additionally, the monocots were subdivided
into Poales, Arecales, Zingiberales and Asparagales.

Results

Although a previous study [34] indicated two equally
likely tree topologies for higher relationships in skipper
butterflies, after scaling those topologies in relative times
with the crown age of skippers assigned to one unit
time, we observed that the relative times of divergences
across the contrasting topologies were similar for all
major clades, except Euschemoninae, Eudaminae and
two clades of Pyrginae (Additional file 1: Figure S1). To
assess the influence of topological uncertainties on di-
versification analyses, we performed all diversification
analyses additionally on 100 randomly selected posterior
trees from the dating analysis, which showed no such
influence.

Diversification rates and pattern

The MCC tree indicates that Hesperiidae began diversi-
fying in the late Cretaceous ca. 82 Mya, when Coeliadi-
nae diverged from the rest of the family. Based on the
Monte Carlo Constant Rates (MCCR) test, internal
nodes were significantly closer to the root than expected,
indicative of a decrease in net diversification rate over
time (gamma = -13.88, critical gamma = -12.72 at
p = 0.004). The LTT plot deviated significantly from a
simulated curve generated under constant diversification
rate with incomplete taxon sampling (Fig. 1d), indicating
heterogeneity in diversification rate through time. More-
over, a model of diversification specifying change in rate
best fits the lineage accumulation on the MCC tree
(Additional file 1: Table S1).

The pattern of variation in diversification rates was
also reflected in the BAMM analysis accounting for ex-
tant species richness. There was a slow and continuous
increase in the net diversification rate up to 50 Mya
(Fig. 1le; black curve), after which the slope of the
curve increased steadily indicating an increase in the
rate. After ~40 Mya, the diversification rate gradually
declined.
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This disparity in diversification rates across the phyl-
ogeny explains the species richness of higher-level clades
(PGLS: r = 0.87; p < 0.0001). The trait-independent
analysis in BAMM estimated two major shifts in diversi-
fication rate over the phylogeny (Fig. 1la) (basal rate:
0.10, rate at 1 st shift = 0.48 and 2nd shift = 0.24),
both within the subfamily Hesperiinae. We note that
while the probability for two rate shifts on the phyl-
ogeny is 0.83, the point estimates for those shifts have
varying probabilities, i.e. 0.9 for 1st shift and 0.6 for
2nd shift, as evident from credibility set of rate shifts
(Additional file 1: Figure S2).

Influence of the K-Pg event

The LTT plot shows that the diversification rate slowed
down around K-Pg boundary (~ 65 Mya), suggesting ei-
ther slower speciation rate or lineage extinctions (Fig.
1d). The rate of lineage accumulation remained low up
to ca. 50 Mya, after which the rate suddenly increased.

Hostplant use and Biogeography

Mapping of the larval hostplant data onto the phylogeny
(Fig. 1a) indicated that the early hesperiid lineages fed
on dicots. Around ca. 65 Mya, one lineage shifted to
monocot feeding and later this lineage gave rise to three
subfamilies including the most speciose subfamily
Hesperiinae.

The posterior distribution from the BAMM analysis
indicates that the net diversification rate of the
monocot-feeding clade was higher than that of the
dicot-feeding clades (Fig. 1c). The differential diversifica-
tion rates across the monocot- and dicot-feeding clades
were corroborated in the BiSSE analysis (Fig. 1b), where
the higher diversification rate of the monocot-feeding
lineages corresponded to a higher speciation rate al-
though extinction rates did not differ between dicot- and
monocot-feeding groups (Additional file 1: Figure S3).
Topological uncertainties had no major influence on
these estimations, as the AIC value from the MCC
tree analysis is close to the average of the AIC values
from 100 randomly selected posterior trees under a
full model analysis (Additional file 1: Figure S4).
However, a comparison of the SSE models (Additional
file 1: Table S2) indicated that the model with hidden
(unmeasured) states of the trait best fits the diversifi-
cation pattern.

We did not find any strong associations between di-
versification rate shifts and biogeographic patterns (Fig.
la). However, the mapping illustrated that the first rate
shift happened in a lineage distributed across the Orien-
tal and Afrotropical regions. The second rate shift oc-
curred in a Neotropical lineage.
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Fig. 1 Diversification rates across the hesperiid phylogeny and the
comparison of rates with paleoclimatic events. A more detailed
figure with names of genera is shown in Additional file 2. a The
hesperiid time tree mapped with hostplant data and geographic
distributions. The names at nodes represent subfamilies. The
terminal branches are colored based on the broad category of
hostplant use. Monocot feeding taxa are additionally shown with
the known categories of plants (black Circle: Poales; Qutward triangle:
Arecales; Star. Zingiberales; Inward triangle: Asparagales) they feed
upon. Coloured circles represent known distributions of the taxa (a
filled circle indicates presence in the area). The arrow indicates
the shift from dicot to monocot feeding. The red stars at nodes
indicate the points of diversification rate shifts (numbered as shift 1
and 2) from the BAMM analysis. b Posterior distributions from the
BiSSE analysis for net diversification rates of monocot- and dicot-
feeding hesperiids. Lines below each distribution are 95% confidence
intervals. ¢ Net diversification rate from the BAMM analysis for
the dicot- (blue) and monocot-(red) feeding lineages. d The LTT
curve (in red) of the MCC tree superimposed on the LTT curves
(in grey) from 1000 trees simulated under constant diversification
rate for 290 taxa. e The change in paleoclimatic temperature (as
in [93]) (in grey) plotted using the R package RPADNA v1.2 [94].
This climatic plot is superimposed with the mean speciation rate
(along with the posterior distributions) for the whole hesperiid
phylogeny (in dark grey) and the speciation rates of the lineages those
experienced rate shifts (shift 1 and 2 as in (a))

Discussion

We present the most comprehensive phylogenetic hy-
pothesis of hesperiid butterflies, including ca. 300 taxa.
Based on this phylogeny, we infer the macroevolutionary
history of the group in relation to historical events and
coevolutionary interactions with their hostplants.

Skippers started evolving ca. 90 Mya, when dicots were
the dominant plants [60], and early lineages of the family
diversified on these plants. Evolution of monocot
feeding ca. 65 Mya provided the intrinsic ability to
utilize otherwise unavailable ecological resources. This
novel interaction with the environment resulted a
higher net diversification rate of the monocot-feeding
group (Fig. 1b, c). The robustness of this correlation
(monocot feeding ~ diversification) to fundamentally
different approaches of analyses (BAMM, and BiSSE;
see Fig. 1b, c) lends further support to the higher di-
versification of monocot-feeding group. Although the
monocot-feeding lineage represented <20% of the lineages
at the K-Pg boundary (~65 Mya), it includes ca. 50% of ex-
tant species.

However, model comparisons indicated a possible in-
fluence of unknown factors on the estimated diversifica-
tion pattern suggesting that the association between
monocot-feeding and diversification rate must be influ-
enced by certain unmeasured factors. Interestingly, we
found that the change to monocot feeding did not in-
crease diversification immediately — the rate shift, a ca.
four-fold increase compared to the background rate, oc-
curred ca. 50 Mya (Fig. la, e) within the subfamily
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Hesperiinae. Although the intrinsic ability to utilize
monocots provided new capability for niche exploration,
the low availability of monocots probably imposed an
extrinsic limitation that did not allow high rates of diver-
sification initially. The earliest monocot-feeding lineages
specialized on grasses (Fig. 1a); the limited availability of
open grassland habitats may have also imposed a limita-
tion on diversification. The rate shift occurred soon after
the Paleocene—Eocene Thermal Maximum (PETM) ca.
55-56 Mya, a period when the earth’s temperature in-
creased dramatically as a result of addition of carbon to
the oceans and the atmosphere [61, 62].

The PETM followed less-severe warming periods up
to early Eocene (~ 50 Mya) mainly due to shuffling of
carbon between atmosphere and ocean [63]. These
warm periods are associated with diversification of forest
dwelling monocots and also experienced compositional
changes in insect fauna, as evidenced by fossil records
[64, 65]. Eocene fossils indicate elevated levels of insect
herbivory (leaf damage frequency) and greater insect
herbivore diversity per hostplant (leaf damage type)
[28, 64]. Thus, the rapid radiation of skippers ca. 50
Mya coincides with the historical diversification pat-
tern of herbivorous insects in the Eocene, although
the selective forces behind these radiations are not
known [65].

The increase in diversification beginning ca. 50 Mya
happened in lineages distributed in the Oriental and
Afrotropical regions. This was followed by a downward
shift in diversification rate, during the late Eocene to
Oligocene, possibly due to saturation of ecological
niches in these biogeographic areas. The diversification
rate again increased (about two-fold compared to the
background rate) ca. 40 Mya in a Neotropical grass-
feeding (Poales) lineage (Fig. 1a, e). This shift coincides
with the appearance of open-habitat grasses in the Neo-
tropics when the atmospheric temperature gradually de-
creased [66—68]. Therefore, the emergence of open-
habitat grasslands appears to provide the extrinsic factor
of EO for the diversification of skipper butterflies. Al-
though grasses became dominant in Neotropics during
the Miocene (~ 20 Mya) [68], this increased availability
of grasses, interestingly, had little impact on hesperiids.

Our study suggests that the extrinsic availability of re-
sources can modulate the potential of intrinsic ability in
generating EO for rapid diversification. The diversification
pattern in Satyrinae butterflies [19] is consistent with this
hypothesis. In Satyrinae, the ability to feed on grasses ap-
peared early in the lineage; however, rapid diversification
occurred in one lineage — the tribe Satyrini — when grasses
became abundant during Oligocene (~ 33—-26 Mya) [19].

Although grass feeding has been thought to be an im-
portant evolutionary innovation that is closely tied to
rapid radiations of most herbivorous insects [69], the
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mechanistic basis of increased speciation rates due to
grass feeding is unclear. Diffuse coevolution [70-72] be-
tween insects and their hostplants, which has been
widely shown to increase insect speciation rates [13, 73,
74], has been attributed to the pressure on herbivorous
insects to specialize. As first postulated by Ehrlich and
Raven [14], plants evolve chemical defenses against her-
bivores [75], which forces herbivores to specialize [76],
leading to a coevolutionary arms race [15, 16]. Episodes
of generalization and specialization can then lead to in-
creased speciation rates [77, 78]. However, grass-feeding
insects tend to be broad generalists, with rare examples
of narrow specialists (see [79, 80]). This is likely because
most grasses are expected to rely predominantly on
physical defenses such as silicifaction [81-83] (also see
[84, 85]). Although chemical defenses in the form of sec-
ondary metabolites [86, 87] and fungal-mediated toxins
[88, 89] have been reported in grasses (also see [90, 91]),
the extent to which these chemicals confer defense
against herbivory are still obscure and limited to few
taxa.

Yet, satyrines and skippers, the major butterfly groups
that feed on grasses, both appear to have radiated rap-
idly as a result of grass feeding. We opine that this is
likely not because of the classical insect-hostplant coevo-
lutionary arms race postulated by Ehlrich and Raven
[14]. Rather, the opportunity to invade grasslands (savan-
nahs) could have been the key. The dominance of grass-
lands over forest communities may have increased rates
of allopatric speciation.

We did not find evidence for the effect of the K-Pg
boundary on the diversification of skipper butterflies,
unlike in nymphalid butterflies that radiated explosively
immediately after this event [23]. However, the evolution
of monocot feeding coincided with the K-Pg event. We
hypothesize that the catastrophic events during this
period led to the extinction of competing herbivores on
monocots, and thus allowed the inclusion of monocots
in the hostplant repertoire of skippers.

Potential methodological concerns

BiSSE

Although hugely popular, BiSSE is known to perform
poorly when the number of tips is low, and when the
tip-ratio bias (ratio of numbers of tips with different
character states) is high [92]. Davis et al. [92] concluded
that BiSSE results should be inferred with extreme cau-
tion when the phylogeny included fewer than 300 termi-
nals and/or when fewer than 10% of species are of one
character state. Although tip-ratio bias is unlikely to be a
problem in our dataset, we acknowledge that the num-
ber of tips is a concern. However, the main result from
BiSSE, i.e., increased diversification of monocot feeders
compared to that of dicot feeders, is also corroborated
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by BAMM, a fundamentally different modelling ap-
proach. Therefore we believe that the result is robust.

BAMM
Moore et al. [53] argued that BAMM is strongly affected
by the priors specified, and that the estimates of
diversification rate parameters are unreliable (but see
[54]). To check the effect of priors on the BAMM results,
we performed multiple analyses with varying priors for
rate shifts, but found that priors had no effect on the
number or positions of rate shifts detected.

Therefore, we have confidence in the main results pre-
sented here.

Conclusions

We have shown that the ability of skipper butterflies to
feed on monocots evolved at the K-Pg boundary and
provided a novel intrinsic EO that eventually allowed
monocot-feeders to have a higher diversification rate
compared to dicot-feeders. The diversification rate (a
four-fold increase compared to background rates) itself
shifted ca. 50 Mya, soon after the PETM, in a lineage of
the subfamily Hesperiinae. We attribute this delayed in-
crease in diversification to the limited availability of
monocots, which comprised an extrinsic limitation for
niche exploration. There was another increase in diversi-
fication rate (a ca. two-fold increase) in a Neotropical
Hesperiinae lineage ca. 40 Mya, coinciding with the ap-
pearance of grassland communities in the region. We
suggest that grass feeding allowed rapid radiations in the
two major groups of grass-feeding butterflies - skippers
and satyrines - not through the classical insect-hostplant
coevolutionary arms race, but by enhancing the chances
of allopatric speciation.
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