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Abstract

Background: Understanding the genetic basis of adaptation to high altitude life is of paramount importance for
preserving and managing genetic diversity in highland animals. This objective has been addressed mainly in
terrestrial fauna but rarely in aquatic animals. Tibetan Schizothoracinae fish is the ideal model system in evolutionary
biology, carrying key insights into evolutionary genetics of speciation and adaptation at high altitude.
Gymnocypris przewalskii is the newly formed Schizothoracinae fish species in the Tibetan Plateau, inhabits
chronic cold, extreme saline and alkaline aquatic environment in Lake Qinghai, thus evolving the unique
genomic signatures to adapt extremely severe environments.

Results: To characterize its genomic features, we assembled de novo transcriptome of G. przewalskii from
Lake Qinghai. Intriguingly, by comparative genomic analyses of G. przewalskii and 8 other fish species, we
identified potential expansions in gene families related to energy metabolism, transport and developmental
functions, possibly underlying the adaptation to these environmental stresses. Through comprehensive molecular
evolution analyses, we found that sets of genes controlling mitochondrion, ion homoeostasis, acid-base balance and
innate immunity show significant signals of positive selection. Compared to previous studies on highland fishes, we
failed to identify any positively selected genes related to hypoxia response.

Conclusions: Our findings provide comprehensive insights into the genetic basis of teleost fish that underlie their
adaptation to extreme high altitude aquatic life on the Tibetan Plateau.

Keywords: Adaptation, Comparative genomics, Tibetan Schizothoracinae fish

Background

It is an interest for both evolutionary biologists and ecolo-
gists to understand how wildlife adapts to environment at
high attitude [1, 2]. With the average elevation approxi-
mately 4,000 m above sea level (a:s.l) [3, 4], the Tibetan
Plateau (TP), imposes extremely inhospitable environmen-
tal challenges to all the native creatures [2, 5]. Many native
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Tibetan organisms have developed unique morpho-
logical, physiological and genetic features to tolerate
harsh living conditions [6]. Recent studies employing
genome-wide approaches mainly focused on the hyp-
oxia and metabolic adaptation of Tibetan terrestrial
animals, including yak [2], Tibetan antelope [4], ground
tit [3], Tibetan Mastiff [7], Tibetan dog [8], and Tibetan
Chickens [9]. Nevertheless, little is known about the
adaptive mechanisms of Tibetan aquatic animals to
water environment. Schizothoracinae fishes, the pre-
dominant fish fauna in the TP, evolved specific genetic
and phenotypic characteristics to adapt the extreme
aquatic environments, such as chronic cold, high UV
and PH value. Understanding of the genetic foundation
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of Schizothoracinae fishes will shed novel lights on the Yellow River [17, 18]. During the early to late Holo-
highland adaptation of Tibetan wildlife. cene, G. przewalskii has gradually evolved from the
Tibetan naked carp (Gymmnocypris przewalskii, family  freshwater fish to tolerate high salinity and alkalinity
Cyprinidae) is one of the best characterized Schizothor-  [17, 19]. In addition to high salinity and alkalinity, G.
acinae fish species in the TP, and it serves as an ideal przewalskii survives in low temperature and hypoxic
model in evolutionary biology [10-14]. Using G. prze- environment in Lake Qinghai [20-22]. Because of the
walskii as a research model, key genes in speciation and  unique evolutionary history in Lake Qinghai at high
adaptation were identified [10-12, 15]. Unlike other altitude, G. przewalskii provides an exceptional model
broadly distributed Schizothoracinae fish species, G. to investigate the genetic mechanisms underlying adap-
przewalskii inhabits saline and alkaline lake (Lake tation to extreme aquatic environments in the TP.
Qinghai), but also survives in freshwater of connective Recent progresses in sequencing technologies and bio-
rivers during the spawning migration (Fig. 1a). As the informatics offer a great opportunity to study the tran-
largest salt lake in China, Lake Qinghai is highly saline  scriptomes of non-model organisms without reference
(up to 13%o) and alkaline (up to pH 9.4) water environ-  genomes [23, 24]. Comparative transcriptomic analysis
ment, a typical salt lake with unusually high sodium, approaches have considerable impact on evolutionary
potassium and magnesium concentration [16, 17]. Lake  biology and facilitate investigation of the genetic basis of
Qinghai used to be freshwater and connected to the evolution and adaptation. An additional advantage of
Yellow River, while during the late well-known geo- transcriptomic study is its successful application in poly-
logical events “Gonghe Movement” (15 mya), Lake ploidy organisms to obtain massive protein-coding genes
Qinghai was separated with the upper reaches of the and molecular markers [25, 26]. G. przewalskii is
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Fig. 1 The sampling site and G. przewalskii transcriptome annotation. a The sampling map was created using the ArcGIS v10.1 (ESRI, CA, USA) and
Adobe lllustrator CS5 (Adobe Systems Inc,, San Francisco, CA). The blue triangle represented the sample site. Photos of G. przewalskii and Lake
Qinghai are taken by Dr. Chao Tong. b Sequence number distribution and cumulative length of contigs, transcripts and unigenes. ¢ Venn
diagram showed shared and distinct genes under the annotations of NR, Swiss-Prot, eggNOG and KEGG databases. d Sequence number distribution
of unigene ORF annotated by MAKER, TransDec and ESTScan
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recorded as a tetraploid without a reference genome
[18], therefore, we applied the comparative transcrip-
tomic analysis to understand the genetic forces of its
adaptation to the aquatic environment in Lake Qinghai.
In current study, we present the first reference transcrip-
tome of G. przewalskii, and characterized its genetic fea-
tures relative to other available fish genomes. We also
conducted multiple evolutionary analyses to uncover the
potential genetic mechanisms of highland adaptation in
fishes.

Methods

Sample collection and ethics statement

All animal experiments were approved by the Animal
Care and Use Committees of the Northwest Institute of
Plateau Biology, Chinese Academy of Sciences. Eight
adult Tibetan naked carp individuals (four males and
four females) were collected from Lake Qinghai (37°03"
N, 100°26E, Fig. 1a) using gill nets. All individuals were
classified based on the gender and dissected after
anesthesia with MS-222 (Solarbio, Beijing, China).
Tissues from gill, kidney, brain, heart and liver from
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each individual were collected and immediately stored in
liquid nitrogen at -80 °C.

RNA extraction

Total RNA was isolated from each eight individuals
using TRIzol reagent (Invitrogen, Carlsbad, CA) accord-
ing to the manufacturer’s protocol. The quantity and
quality of total RNA were measured using an Agilent
2100 bioanalyzer (Agilent Technologies, Palo Alto, CA)
and gel electrophoresis. Equal amount of RNA from
eight individual of same tissue was pooled to construct
transcriptome library independently (five libraries), and
was sequenced with an Illumina HiSeq™ 2000 platform
(Fig. 2).

Reference transcriptome assembly

The raw reads from five libraries were preprocessed to
remove clipped adapter sequences, contaminated se-
quences, low quality reads (Q<20). All clean reads
were assembled using Trinity software [27] with default
parameters. Contigs from each assembly libraries were
performed with CD-HIT [28]. Contigs from the five
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Fig. 2 The flowchart represents four main phases in comparative transcriptome analyses process: (1) Sample preparation and sequencing;
(2) Data assembling and annotation; (3) Genomic evolution analyses; (4) Phylogenetic and molecular evolution analyses
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libraries were merged and assembled into transcripts,
and non-redundant unique transcripts as long as pos-
sible were clustered into unigenes (note: unique gene),
with a minimum overlap length of 200 bp (Fig. 2). The
clustered unigene sequences were first aligned to four
public databases with a Blast-X search (E-value cutoff
of 1x10719), including NCBI non-redundant (NR),
Swiss-Prot, eggNOG and Kyoto Encyclopedia of Genes
and Genomes (KEGG). Gene ontology (GO) terms were
obtained from NR hits using Blast2GO software [29]
with default parameters. Next, two programs TransDecoder
(http://transdecoder.github.io/) and MAKER [30] were ap-
plied to obtain the Open reading frames (ORFs) of genes
(Fig. 2). The remaining unigenes which can not be aligned
to any protein database were scanned using ESTScan soft-
ware [31], producing predicted coding region and direction.
Finally, after removing the CDSs which length was shorter
than 150 bp, all eligible CDSs unigenes were translated into
amino acid (aa) sequences with standard codon table.

Orthologs identification, sequence alignment and
expanded gene family annotation

Translated Tibetan naked carp (G. przewalskii) amino
acid sequences were pooled into a protein database with
sequences (length > 50 aa) from another eight fish spe-
cies genome datasets (Fig. 2): zebrafish (Damnio rerio),
cod (Gadus morhua), cave fish (Astyanax mexicanus),
Fugu (Takifugu rubripes), Nile tilapia (Oreochromis nilo-
ticus), medaka (Oryzias latipes), spotted gar (Lepisosteus
oculatus) from Ensembl database (release 78) and com-
mon carp (Cyprinus carpio) from online database
(http://carpbase.org/). Next, self-to-self BLASTP was
conducted for all amino acid sequences with a E-value
cutoff of 1e™, and hits with identity < 30% and coverage
<30% were removed. Orthologous groups were con-
structed from the BLASTP results with OrthoMCL
v2.0.9 [32] with default settings. All the identified ortho-
logous groups were respectively calculated, mapped and
illustrated by venn diagram. Expansion of gene families
was analyzed and processed using CAFE 3.1 [33]. Finally,
gene ontology (GO) functional enrichment analyses for
the expanded gene family were carried out by Blast2GO
software [29].

Phylogenetic tree reconstruction

After trimming multicopy genes, single copy gene fam-
ilies were retrieved from OrthoMCL database as de-
scribed above and then used for further phylogenetic
analysis (Fig. 2). Gene families containing any sequences
shorter than 200 aa were removed, and amino acid se-
quences in each family were aligned by MUSCLE
(v3.8.31) program [34] with default parameters, and cor-
responding CDS alignments were back-translated from
corresponding amino acid sequence alignments. Next,
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the families were further filtered if the CDS alignment
contained any taxon in which more than 50% data was
missing. The remaining CDS alignments of each family
were separated into 3 sets corresponding to each of
three codon positions. The four super matrices (all
codon positions and each codon position) were then
separately assembled into supergenes using a custom
Perl script. The jModeltest program [35] was used to se-
lect the best fitting substitution model according to the
Akaike information criterion based on the supergenes
concatenated 4D-sites. The GTR + gamma + I model was
found to be the best fitting, and PhyML3.1 [36] was
employed to build the maximum likelihood (ML) tree
with 1,000 nonparametric bootstrap replicates (Fig. 2).

Divergence time estimation
We generated two datasets from CDS alignments to esti-
mate divergence time of each species. One dataset con-
tained the first two partitions (note: partition means the
codon position), including first and second codon posi-
tions of the sequences. The other dataset contained all
three partitions corresponding to all three codon posi-
tions in the sequences. Divergence times were esti-
mated under a relaxed clock model using MCMCTree
program in PAML4.7 [37], with “Independent rates
model (clock =2)” and “JC69 model” selected for our
calculations. MCMC process preforms 4,000,000 iter-
ation after a burn-in of 2,000,000. Other parameters
were the default settings of MCMCTree. We ran this
program twice for each dataset to confirm that the
results were consistent between runs. The following
constraints were used for time calibrations from TIME-
Tree [38], a public knowledge-base of divergence times
among organisms, demonstrating the high reliability of
this molecular clock dating strategy (Fig. 2).

//Zebrafish — Medaka, stickleback, Takifugu, Tetraodon
(min 149.85 Mya; max 165.2 Mya)

//Medaka — stickleback, Takifugu, Tetraodon (min 96.9
Mya; max 150.9 Mya)

//Zebrafish, Medaka, stickleback, Takifugu, Tetraodon
— toad, bird, mammal (min 416 Mya; max 421.75 Mya)

Molecular evolution analyses

The lineage-specific evolutionary rates for each branch
of nine fish species were estimated using the codeml
program in PAML 4.7a [37] with free-ratio model
(branch model). One thousand concatenated alignments
constructed from 150 randomly chosen orthologs were
used to estimate lineage-specific mean values of dN and
dS and the dN/dS ratio (w value) (Fig. 2).

We used branch model in codem! program to identify
fast evolving genes (FEGs) with null model assuming that
all branches have been evolving at same rate and alterna-
tive model allowing foreground branch to evolve under a
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different rate (Fig. 2). The likelihood ratio test (LRT) with
df =1 was used to discriminate between alternative model
for each orthologs in the gene set. Multiple testing was
corrected by applying false discovery rate (FDR) method
implemented in R software (https://www.r-project.org/).
We considered the genes as evolving with a significantly
faster rate in foreground branch if FDR-adjusted P value <
0.05 and a higher w values in foreground branch than
background branches.

We used codeml program with a branch-site model
[39] to identify positively selected genes (PSGs) in the
Tibetan naked carp lineages, with other lineages being
specified as foreground branch (Fig. 2). A LRT was con-
structed to compare a model that allows sites to be
under positive selection (w>1) on the foreground
branch with the null model in which sites may evolve
neutrally (w=1) and under purifying selection (w<1)
with a posterior probability in excess of 0.95 based on
the Bayes empirical Bayes (BEB) results [40]. Finally, P
value was calculated based on rigorous Chi-square stat-
istic adjusted by FDR method and genes with adjusted
P value < 0.05 were treated as candidates under positive
selection.

Gene ontology (GO) functional enrichment analyses
for both FEGs and positively selected genes (PSGs) were
carried out by Blast2GO software [29].

Sequence availability

[lumina sequenced read data were deposited in NCBI Se-
quence Read Archive as follow: experiment (SRX2347530),
and runs for each tissue including gill (SRR1542352),
kidney (SRR1542353), brain (SRR5019657), heart
(SRR5019658) and liver (SRR5019659).

Results

Sequence analysis and assembly

445,582,631 raw 101-bp paired-end reads were generated
by RNA-seq from five cDNA libraries, with an average
of 89 million reads per library (Additional file 1: Table S1).
After removing adapters and low-quality read, totally
404,479,795 clean reads were obtained from each organ’s
datasets. After assembly, 30,672 unigenes were finally
yielded, ranged from 201 to 24,383 bp in length, with an
N50 of 3,076 bp and an average length of 1,988 bp
(Additional file 1: Table S1). The length distribution of
all contigs, transcripts and unigenes is shown in Fig. 1b.

Functional annotation

To comprehensively annotate the data, all unigenes were
aligned to several public databases. A total of 28,519
(89.11%) sequences were yielded at one significant match
to an existing gene model in Blast-X search (Fig. 1c,
Table 1 and Additional file 2: Table S2). Statistics results
of eggNOG and GO classification of all annotated
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Table 1 Annotation results of G. przewalskii transcriptome

unigenes
Number Percentage

Functional annotations Total 28,519 92.98%
Swiss-Prot 26,595 86.71%
KEGG 21,203 69.13%
NR 28,490 92.89%
GO 21,657 70.61%

CDS annotations Total 28817 93.95%
TransDecoder 25736 83.91%
MAKER 2647 8.63%
ESTScan 434 142%

unigenes were shown in Additional file 3: Figure S1 and
S2. 49.72% (n =15,250) of homologs aligned to known
proteins with sequence identify between 80 and 100%.
Because the Tibetan naked carp was phylogenetically
closer to zebrafish than some other fish species with
complete genomic resources, we found 75.23% of the
best hits (n =23,074) were similar with model organism
zebrafish (Additional file 4: Table S3). In addition, we ex-
tracted and aligned the putative CDSs in Tibetan naked
carp transcriptome unigenes using TransDecoder,
MAKER and ESTScan programs. Totally 93.95% (n =
28,817) of G. przewalskii unigenes with full length and
partial CDSs were annotated (Table 1).

Genomic evolution

A total of 213,853 proteins from G. przewalskii (n = 28,817)
and eight other fish species, including A. mexicanus, C.
carpio, D. rerio, G. morhua, L. oculatus, O. latipes, O.
niloticus, T. rubripes, were binned into 30,211 ortholo-
gous groups (gene family) using OrthoMCL software
following self-self-comparison with BLAST-P program.
A total of 6,829 gene families were conserved among
these nine fishes (Fig. 2a). Gene family expansion ana-
lysis showed that 214 gene families were expanded in
G. przewalskii (Fig. 3a). Functional enrichment analysis
suggested that significantly expanded gene families (P <
0.05) were involved in 131 GO categories of three main
groups (Additional file 5: Table S4). The first group was
related to metabolic process, such as cGMP metabolic
process (GO:0046068, P =0.00725), malate metabolic
process (GO:0006108, P =0.0000088) and one-carbon
metabolic process (GO:0006730, P =0.000081). The
second largest group was associated with transport
function, including water transport (GO:0006833, P =
0.00456), response to pH (GO:0009268, P =0.0072),
monovalent inorganic cation transport (GO:0015672,
P =0.000031). These data indicated that gene expan-
sion was associated with high salinity and alkalinity
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environment in Lake Qinghai. Developmental func-
tional category was the third group, such as
pharyngeal muscle development (GO:0043282, P=
0.00576), heart trabecula formation (GO:0060347, P =
0.0000092). By comparing the orthologous groups

Table 2 Summary of orthologous groups among nine species

between nine fish species, we identified 28,817 G. prze-
walskii genes clustered into 15,574 gene families
(Table 2). These results indicated that gene models of
G. przewalskii were similar to those of other represen-
tative well-annotated vertebrates.

Species Number of genes Unclustered Genes in families Number of families Average genes per family
A. mexicanus 23,008 2,948 20,060 14,401 1.393
C. carpio 39,140 10,562 28,578 13,749 2079
D. rerio 25,355 1,525 23,830 15,189 1.569
G. morhua 19,821 2,296 17,525 12,929 1.355
G. przewalskii 28817 6,092 22,725 15,574 1459
L. oculatus 18,304 1481 16,823 13,260 1.269
O. latipes 19,531 1,559 17,972 12,901 1.393
O. niloticus 21422 785 20,637 13,760 1.500
T. rubripes 18,455 768 17,687 12,615 1402
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Phylogeny inference and divergence time estimation
Among 6,829 shared core orthologs, we identified 2,178 pu-
tative single-copy genes (only one orthologs in each gene
family) in each fish species (Fig. 3b), making them suitable
for phylogenetic inference and divergence time estimation.
In order to maximize the information content of sequences
and minimize the impact of missing data, stringent criter-
ion was used to filter 2,178 single-copy orthologous groups
with stricter constraints, including length (minimum 200
aa), sequence alignment (maximum missing data 50% in
CDS alignments). We eventually obtained 1,159 groups and
concatenated them into a single supergene for each fish
species using a custom Perl script. Each of which was then
subjected to phylogeny analyses with in PhyML 3.1 soft-
ware [36]. Phylogenetic tree based on 1,159 individual nu-
clear genes was supported with 100% bootstrap values,
consistent with the tree on mitochondrial genes or nuclear
DNA markers (Additional file 3: Figure S3).

All of the estimated divergent times were labeled on
nodes of this phylogenetic tree (Fig. 3c), and were well-
matched to data deposited in TIMETREE [38]. The
molecular-clock approached predicted divergence between
G. przewalskii and C. carpio lineages was 29.95 million
years ago (Mya) with confidence interval 27.25 to 45.65
Mya (Fig. 3c).

Accelerated evolution on Tibetan naked carp lineage
Adaptive divergence at molecular level may be reflected
by an increased rate of non-synonymous changes within
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genes involved in adaptation [2]. We used a branch
model constructed in PAML software to determine dN,
dS, and dN/dS ratio values across all shared 6,829 ortho-
logs in nine fish lineages. The higher dN/dS ratio in G.
przewalskii lineages (with P<2.2x107'° in Wilcoxon
rank sum test) implied that accelerated function evolu-
tion in G. przewalskii (Fig. 4a). Additionally, we analyzed
the dN/dS ratio for each branch for a concatenated
alignment of all 6,829 orthologs and 1,000 concatenated
alignments constructed from ten randomly chosen
orthologs. Intriguingly, using both comparison strategies,
we found that G. przewalskii exhibited a significantly
higher dN/dS ratio than eight other fish branches in
present study (P < 2.2 x 107'°). These findings implicated
that G. przewalskii was experienced the ongoing acceler-
ated evolution under extreme environment (Fig. 4b).

Fast evolving (FEG) and positively selected genes (PSG)

Using a set of 2,183 single-copy gene families retrieved
from OrthoMCL, we conducted fast evolving and posi-
tive selection analyses to discover genes under the selec-
tion. In total, 513 FEGs were identified in G. przewalskii
(Additional file 6: Table S5). Functional enrichment
(GO) analysis suggested that these FEGs were enriched
into energy metabolism, immune response, and trans-
port functions. In the first group, many FEGs were
related to mitochondrion, ATP binding and oxidative
phosphorylation, such as NDUB9, COX11, MDH,
ATP5cl and ATP5b. In addition, we also identified a
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Fig. 4 Comparison of selection feature of G. przewalskii and other fish species. a Average dN/dS ratios of concatenated all orthologs in G.
przewalskii and other 8 fish species estimated by branch model in codem/ program in PAML. b Violin plot showed the dN/dS ratios of each
orthologous genes in 9 fish species estimated by branch-site mode
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large number of immune genes, such as IRF8, Clq, C2,
TNF10 which was involved in the stress responses as
well. The last but most important finding was that FEGs
included genes functioning in transports and ion chan-
nel (Additional file 6: Table S5), such as solute carrier
(SLC) family (SLC9A3 and SLC19A3) and transmem-
brane protein (TM) family (TM9, TM33, TM97, TM120,
TM175). Positive selection of these genes may provide
the genetic basis for rapid adaptation to high saline and
alkaline adaptation and tolerance.

Positive selection analysis pinpointed genes that were
associated with a functional and environmental shift
[41]. The branch-site model in PAML software identified
73 positively selected genes in G. przewalskii (Additional
file 7: Table S6) that were possibly influenced the adap-
tation to high altitude aquatic life. GO analysis results
indicated that PSGs had similar GO categories as FEG.
For instance, 3 PSGs, PRKACA, ITPKA and PIGH were
significantly enriched in energy metabolism. NKAP en-
codes NF-kappa-B-activating protein and TNFR1 en-
codes tumor necrosis factor receptor 1 were both related
to immune response function. In addition, one PSG,
SLC4A1 in SLC super family was also identified to be
under positive selection. While comparing with pub-
lished candidate PSGs identified from Tibetan wildlife
[2-4, 42], we failed to detect any PSG potentially in-
volved in hypoxia response function in G. przewalskii.

Discussion

Comparative genomics analyses have been widely used
to unveil the genetic basis of speciation [43-45] and
adaptation of wild organisms [2, 3, 9, 10, 42]. Given the
high expense of genome sequencing and complicated al-
gorithm for genome assembly, particularly in polyploidy
creatures, such as Schizothoracinae fish. Transcriptome
sequencing is an effective and affordable approach to
initiate comparative genomic analyses in non-model or-
ganisms. It mainly focuses on a large number of protein
coding genes under natural selection. Here we se-
quenced and assembled multiple tissue transcriptome
from G. przewalskii We comprehensively annotated this
large-scale transcriptomic resources and identified up to
7,000 pairwise orthologs among nine fish genomes for
the basis of comparative genomics analysis and func-
tional verification. By conducting the comparative tran-
scriptomic analysis, we treated G. przewalskii as a
genomic resource to improve our understanding of the
genetic makeup of fish species in the TP and to identify
candidate genes underlying adaptation to the Tibetan
Plateau of Schizothoracinae fishes.

Sequencing information comparison
Although our present study based on five merged tissues
libraries data seemed to provide less unigenes than
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previous report of gill and kidney transcriptome data,
two another important parameters (N50 and average
length of transcript) were even larger than a previous
study (3,076 vs. 1,836; 1,988 vs. 952) [10]. We obtained a
set of higher quality data and it was more appropriate
for further comparative genomic analyses. For the first
time, we comprehensively compared this reference tran-
scriptome of G. przewalskii and eight other fish genome
data from Ensemble database to identify expanded gene
family, fast evolving and positively selected genes (PSG).
Only PSG were identified in both subspecies of G. prze-
walskii [10]. The present study largely enlarged our
understanding of adaptive strategies of G. przewalskii
under extreme environment in the TP.

Evolutionary history and speciation

G. przewalskii is the newly formed fish species in family
Schizothoracinae during the separation of Lake Qinghai
from the Yellow River [10, 12, 16, 18]. Based on mito-
chondrial genomes, evidence suggested that the split of
two cyprinid fish G. przewalskii and C. carpio occurred
approximately 68 mya in accordance with the early uplift
of the TP around 50 mya [5]. Our genomic study sup-
port the notion that both cyprinid fish split at around
29.95 mya based on a larger number of single-copy
orthologs. In addition, we reconstructed the phylogen-
etic tree of G. przewalskii with 8 other fish species with
100% bootstrap values, much more precise than previ-
ous studies using several mitochondrial or nuclear
genes [46, 47]. Our results also implicated that high
efficiency of transcriptomic data for phylogeny con-
struction and accuracy of the divergence time estima-
tion. Meanwhile, current study demonstrated that
evolution of G. przewalskii may be driven by formation
of extremely environmental conditions accompanied by
the uplift of the TP.

Elevated energy metabolism

Genome-wide studies on Tibetan terrestrial animals sug-
gested that an increased evolutionary rate and positive
selection on genes involved in energy metabolism, which
contributed to highland adaptation [2—4, 9]. Our present
work disclosed the adaptive strategy of Tibetan aquatic
animals. Similar to Tibetan wild yak [2] and ground tit
[3], gene families involved in metabolic processes were
remarkably expanded in G. przewalskii, indicating the
development of strong capacity to meet high energy de-
mands in long-term low temperature aquatic environ-
ment. Environmental challenge tended to trigger gene
duplication and neofunctionalization, new members in
gene families possibly enhanced energy production effi-
ciency in G. przewalskii by acquiring novel functions,
which revealed by many cases [48-51]. In addition,
genes showing signature of adaptive evolution in G.
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przewalskii also were involved into energy metabolism.
Consistent with previous finding in Tibetan animals
[2, 3], genes functioning in energy supply and ATP
synthesis, such as NDUB9, encoding NADH ubiquin-
one oxidoreductase subunit B9 [52] and ATP5b, ATP
synthase subunit beta [52, 53] were under strong posi-
tive selection in G. przewalskii.

The adaptive evolution of immune genes in Tibetan
naked carp lineage

Another adaptation of G. przewalskii to high altitude
aquatic life in the TP may be the rapid evolution of im-
mune genes, many of which were associated with innate
immune system. Four FEGs (IRF8, TNF10, Clq and C2)
and two PSGs (NKAP and TNFR1) were all involved
into toll like receptor signaling pathway in innate im-
munity, which was identical to our previous findings [11,
15]. In addition, a recent study suggested that G. prze-
walskii was susceptible to infectious disease with high
mortality in farming industry [54]. Another evidence
showed that low diversity of pathogens occurred in Lake
Qinghai of hypersaline and alkaline environment by pre-
vious survey [16, 17], which indicated that G. przewalskii
survived in a lighter pathogen load environment. There-
fore, we speculated that immune genes of G. przewalskii
have experienced adaptive evolution and functional
shifts to well adapted to this specific aquatic environ-
ment. Innate immune played an important role in fish to
rapidly eliminate pathogen as the first line of defense
against pathogen invasion, including bacteria and para-
site [55, 56]. Recently, a large number of immune genes
were identified in miiuy croaker and large yellow croaker
to undergo adaptive evolution, which contributed to the
fish well-developed immune defense pathogens and
adaptation to dynamic aquatic environments [57, 58].
Compared to these studies, we also identified a number
of immune genes showed signals of positive selection.
Therefore, it was possible that adaptive evolution acting
on innate immune genes in G. przewalskii to response to
a lighter pathogen load in high salinity and alkalinity en-
vironment in Lake Qinghai.

Expansion and adaptive evolution in transport

function genes

We identified expanded gene families functioned in water
transport, response to pH and monovalent inorganic cat-
ion transport in G. przewalskii. This result was consistent
with findings in Amur ide (Leuciscus waleckii) that also
survived in an extremely alkaline environment in Lake
Dali Nur [59]. The alkaline environment of both Lake
Qinghai and Lake Dali Nur spurred evolution and expan-
sion of genes in transport function. SLC family was the
largest common group identified by both groups, it codes
transmembrane transporters for inorganic ions, amino
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acids, neurotransmitters, sugars, purines and fatty acids,
and other solute substrates [60]. Recent evidences indi-
cated that adaptive evolution of SLC family genes con-
tributed to the response to salinity and alkalinity stress
to fishes [59, 61]. SLC4 subfamily encodes bicarbonate-
transporter and regulated of ClI"-HCOj; exchange,
playing critical roles in maintenance of intracellular pH
equilibrium [62, 63]. SLC9 subfamily was essential for
the regulation of Na'/H' exchange [64]. Our study
identified PSGs in SLC family, including SLC4Al,
SLCY9A3 and SLC19A3, which may acquire functional
shift of transport to cope with the severe saline and al-
kaline stress in the Lake Qinghai.

Hypoxia response and controversial issue

Low oxygen is a typical limiting factor for all the Tibetan
terrestrial wildlife [5, 65]. A couple of candidate genes
were identified to participate into the hypoxia response
in Tibetan terrestrial animals, providing the genetic
foundation for the adaptation to low oxygen levels [2—4,
7, 8]. However, the hypoxic environment and hypoxia re-
sponse were the debatable topic for Tibetan aquatic ani-
mal [16-18]. Although previous studies demonstrated
strong positive selection on genes related to hypoxia re-
sponse in highland fishes [42, 66], we were unable to
identify any FEGs and PSGs involved into hypoxia
response in the present study. This difference could be
explained by relatively high dissolved oxygen levels in
Lake Qinghai compared to other highland lakes, result-
ing from abundant and diverse of hydrophyte species
[16, 17]. The comprehensive ecological and genomic
analyses were both required to confirm the hypoxia en-
vironments and the potential hypoxia response in G.
przewalskii.

Conclusions

Tibetan naked carp G. przewalskii exhibits a spectacular
adaptation to extreme cold, high saline and alkaline
aquatic environment in Lake Qinghai. It serves as a re-
markable model to understand evolutionary scenarios
occurring under environmental changes during the uplift
of the TP. In current study, we generate a reference
transcriptome of G. przewalskii and provide an import-
ant genetic resource for comprehensive comparative
genomic analyses across teleost fish. Our results suggest
that gene families predominantly expanded in energy
metabolism and transport function in G. przewalskii.
The potential neofunctionalization of novel genes may
contribute to the adaptation to the extreme environment
in Lake Qinghai. Adaptive evolution occured in genes
involved into metabolism, immune system and transport
functions, and reinforcements the functional adaptation
to the chronic cold, extreme alkaline and saline, lighter
load of pathogens environment in Lake Qinghai.
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Additionally, the current study also shed lights on the
functional validation of candidate genes contributed to
extreme environment adaptation.
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