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Abstract

Background: Low complexity regions (LCRs) are a ubiquitous feature in genomes and yet their evolutionary history
and functional roles are unclear. Previous studies have shown contrasting evidence in favor of both neutral and
selective mechanisms of evolution for different sets of LCRs suggesting that modes of identification of these
regions may play a role in our ability to discern their evolutionary history. To further investigate this issue, we

used a multiple threshold approach to identify species-specific profiles of proteome complexity and, by comparing
properties of these sets, determine the influence that starting parameters have on evolutionary inferences.

Results: We find that, although qualitatively similar, quantitatively each species has a unique LCR profile which
represents the frequency of these regions within each genome. Inferences based on these profiles are more
accurate in comparative analyses of genome complexity as they allow to determine the relative complexity of
multiple genomes as well as the type of repetitiveness that is most common in each. Based on the multiple
threshold LCR sets obtained, we identified predominant evolutionary mechanisms at different complexity levels,
which show neutral mechanisms acting on highly repetitive LCRs (e.g., homopolymers) and selective forces
becoming more important as heterogeneity of the LCRs increases.

Conclusions: Our results show how inferences based on LCRs are influenced by the parameters used to identify
these regions. Sets of LCRs are heterogeneous aggregates of regions that include homo- and heteropolymers and,
as such, evolve according to different mechanisms. LCR profiles provide a new way to investigate genome complexity
across species and to determine the driving mechanism of their evolution.
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Background

Repetitive regions have been ubiquitously found in all
genomes analyzed so far, making them a common com-
parative feature for genome complexity. These regions
belong to a larger category of sequences, known as low
complexity, which are characterized by low diversity in
residues, either nucleotides or amino acids. Within the
broad definition of low complexity regions (LCRs) are
included sequences that differ in terms of their level of
repetitiveness (periodic or aperiodic motifs) and of their
composition (homo- or heterogeneous) but that share
an overall low diversity of residues compared to flanking
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(also known as background or high complexity) regions
[1]. Because of the heterogeneity of LCRs, regions within
this category are often sub-categorized according to their
unique structure and composition producing a large
terminology associated with LCRs that includes micro/
mini-satellites, tandem repeats, interspersed repeats,
simple sequence repeats, single amino acid repeats,
homopolymers, and heteropolymers. While some of
these categories apply to both nucleotide and amino
acid LCRs, others are specific to one or the other
residue type and are, therefore, applicable to specific
questions. For example, microsatellites and LCRs in
non-coding regions are often used as genetic markers
to investigate polymorphisms on a short evolutionary
timescale while LCRs within protein-coding regions
bear the imprint of evolutionary processes over long
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timescales and can be informative on functional roles
of these regions within a protein.

Among eukaryotes, Plasmodium falciparum and Dic-
tyostelium discoideum are known to have some of the
highest levels of genes harboring low complexity regions
(LCRs) (at least 50 %) compared to other eukaryotic
model organisms (~10-20 %) [2], which raises the ques-
tion of what the underlying causes are that regulate the
presence of these regions within genomes.

The LCRs of P. falciparum in particular have been
widely studied in an effort to decipher a possible con-
nection between the variability of these fast evolving
sequences and some phenotypes, such as evasion of the
host immune response that could confer an adaptive
value. These efforts have focused primarily on the
characterization of the composition, frequency, and
evolutionary mechanisms of these regions in protein-
coding genes [3-6] but have achieved contrasting
results. While the composition of these regions is not
debated (high prevalence of asparagines, N), their
frequency and evolutionary mechanisms are less clear.
For example, previous studies have proposed a wide
range of frequencies of genes harboring LCRs (50—
90 %) that depend on the thresholds used to identify
these regions [2, 7, 8], which lead to the formation of
overlapping but non-identical LCR sets. These different
LCR groups have been found to be evolving both neu-
trally and by selection, but the reasons for this contrast-
ing results are unclear [5-11]. A recent hypothesis
focused on the compositional heterogeneity within a
single set of LCRs showing that GC-rich regions,
heterogeneous LCRs with aperiodic motifs, and polyN
regions evolve according to different mechanisms [9].
This initial result suggests that the composition of
LCR sets and, therefore, their mode of identification
may play a larger role in our understanding of their
evolution than previously thought.

Current methods to identify LCRs are based on pa-
rameters that include the length of the region (window
size) and a threshold that determines their status as “low
complexity” (complexity threshold). The values of these
parameters are chosen depending on the regions that
are of interest and are, therefore, dependent on the
context of each study; for example, a study of single
amino acid repeats will use a complexity threshold that
will identify LCRs composed of just one amino acid
repeated multiple times. However, despite the subjectiv-
ity of these parameters, inferences from specific LCR
sets have been applied on a large scale to a variety of
genomes, thus expanding their applicability beyond the
study that originally identified them. The implicit as-
sumption of this approach is that LCRs are regions that
are intrinsically distinct from their genetic surroundings
and can, therefore, be identified by an absolute measure
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(e.g., complexity threshold). Unfortunately, there is cur-
rently no evidence to support this view but rather it is
equally possible that LCRs exist in a relative state and
their properties should be defined based on a compara-
tive measure of their complexity relative to that of the
rest of the gene or genome. In this case, metrics that
take into account the compositional bias of the genetic
background in which the LCR is embedded should be
developed.

To gain a comprehensive picture of LCRs in genomes,
we performed a set of analyses that estimate the overall
complexity of genomes in fully-sequenced Apicomplexa
species using a multiple threshold approach. This ap-
proach produces profiles of frequencies of LCRs that are
summarized by two objective parameters (derived from
the profile curve) and that can be used to evaluate the
presence of different low complexity categories and test
hypotheses on their evolution. We chose the Apicom-
plexa as an example because of the large amount of
information already available for P. falciparum, the
number of related genomes available, and the wide range
of compositional bias in the genomes of these species,
which allowed us to explore the correlation between
LCR sets and their evolutionary history. In particular,
we focus on two aspects: first, a comparison of the
nature of LCRs identified by a single and multiple
thresholds and, second, the consequences of using
single-threshold datasets to determine the evolutionary
history of these regions. We chose to focus on LCRs in
protein-coding regions rather than nucleotides to re-
duce the saturation bias accumulated by nucleotide se-
quences over long evolutionary time frames and that
we would expect to be particularly strong in LCRs that
are known to evolve with fast evolutionary rates [9, 12].
We do, however, use overall nucleotide compositions of
genomes to investigate relations between LCRs and
genome compositional biases.

Using proteome-wide approaches we find that the
shape of the distributions of the complexity profiles
(as determined by the frequency of LCRs at multiple
thresholds) of all apicomplexans is comparable and
can be described by a linear regression on the logits
of the frequency of the LCRs. However, we also find
that the abundance of LCRs is species-specific and in-
dependent from the composition bias of genomes and
phylogenetic history. We also find that evolutionary
mechanisms of these regions are correlated to the
level of complexity of the regions themselves with ho-
mopolymers evolving predominantly by neutral mecha-
nisms and selection acting more strongly as heterogeneity
increases. Our results show the importance of using a
multi-threshold approach in the identification of LCRs
and the risks of generalizing trends across species, even if
closely related.
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Results

The most commonly used method to identify low com-
plexity regions is the software SEG that implements
Shannon’s entropy to calculate the amount of informa-
tion within a segment (or window, W) of a sequence.
Whether implemented within SEG or used independently,
Shannon’s entropy is the most widely used measure of
complexity of a string of characters, such as a sequence
[13, 14]. However, measuring the complexity of a se-
quence is not sufficient to identify LCRs as these are
defined in a comparative framework as being “less” com-
plex than other regions. Thus, any LCR-detection method
inevitably depends on a threshold to distinguish low vs.
high complexity. In current methods this threshold (here
referred to as the complexity threshold, K) is user-defined
and, therefore, subjective. For example, the choice of
parameters in SEG depend on how conservative the user
wants to be in identifying sets of low complexity regions:
large window sizes and low complexity values will identify
fewer regions than parameters for shorter, more diverse
sequences. This absence of “optimal” parameters often
results in the use of default or standardized values that
bias the characteristics of the LCRs identified and the
downstream inferences on their evolutionary and func-
tional roles.

While initial analyses of genome complexity were
carried out with the SEG default parameters (W= 12,
K =2.2), more recent studies suggested the use of W=15
and K=1.9 for eukaryotes to identify longer and more
repetitive low complexity regions [15, 16]. We started
our analysis based on these parameters and identified
LCRs in representative Apicomplexa genomes, which
show a continuum of frequencies of LCRs ranging from
low (<20 %) in Babesia bovis (Bb), Theileria parva (Tp),

Table 1 Statistics of 11 apicomplexa genomes
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and Cryptosporidium parvum (Cp), to medium (>20 %
but<40 %) in Plasmodium vivax (Pv), Plasmodium
cynomolgi (Pcy), Plasmodium knowlesi (Pk), Plasmo-
dium yoelii (Pyo), Plasmodium chabaudi (Pch), Neos-
pora caninum (Nc), and Toxoplasma gondii (1g), to
high (>40 %) in Plasmodium falciparum (Pf) (Table 1).
Interestingly, this pattern does not follow overall genome
composition bias measured as the dependency of AT con-
tent of the protein-coding genes and the frequency of the
LCRs (Kendall rank correlation: -0.26; 95 % bootstrap
confidence interval: —-0.72—0.39) (Fig. 1a). Even when we
analyzed the frequency of LCRs in compositionally biased
and unbiased proteins individually, we found that for most
species LCRs are more frequent, or equally present, in
unbiased proteins, suggesting that the overall composition
bias of a protein is not a determining factor in the forma-
tion of LCRs (Fig. 1b). Exceptions to this trend are N,
Pyo, and Tg in which LCRs are preferentially found in
biased proteins. Additionally, the frequency of LCRs in
each genome does not show any influence from phylogen-
etic relationships as assessed by a phylogenetic contrast
analysis (p-value =0.16; see Methods) carried out by
evaluating the correlation between LCR frequency and
phylogenetic relatedness for each chromosome in each
species (Pyo was excluded from this analysis because its
proteins could not be separated into different chromo-
somes at the time of the analysis) (Fig. 2a).

This single threshold view informs us on relative
complexities across species and can lead to generalized
conclusions such as Cp having a proteome that is more
complex (i.e., fewer LCRs) than that of the plasmodia
(Table 1). However, a different threshold would produce
different results (e.g., K=1 in Table 1) because the single
threshold approach does not take into account the

Tax. group Genome # of chr Protein coding genes AT (%) Sproteome

% LCR frequency (K=1.9) Se (K=1.9) % LCR frequency (K=1) S¢ (K=1)

Hsp Pv 14 5435 55 16.62
Pcy 14 4988 58 16.45
Pk 14 5122 60 16.36
Pyo 14 7724 75 13.71
Pch 14 5042 78 14.05
Pf 14 5410 75 13.35
Ppl Bb 4 3706 57 17.23
Tp 4 4082 59 16.25
Ccd Cp 8 3805 67 15.68
Nc 14 7080 47 14.51
Tg 14 8102 44 14.75

343 19.9 5.08 26.96
31.1 56.64 45 27.5

27.72 55.96 367 2856
26.5 406 4.16 16.06
25.2 53.15 2.27 25.86
49 31.88 2.16 6.2

7 5932 0.16 2992
14.2 71.59 0.34 3951
19.5 62.33 539 3361
39 3774 8.15 9.83
36.7 36.49 9.34 883

LCRs are identified using a window size of 15 and a complexity threshold (K) of 1.9 and 1 as examples. LCRs frequency: percentage of proteins with at least one

LCR. Sq,: Simpson’s Reciprocal Index relative to the diversity of the proteome. The AT content is calculated from the proteome of each species

Abbreviations: Tax Taxonomic, Hsp Haemosporidia, Ppl Piroplasmida, Ccd Coccidia, Pv Plasmodium vivax, Pcy P. cynomolgy, Pk P. knowlesi, Pyo P. yoelii, Pch P. chabaudi,

Pf P. falciparum, Bb Babesia bovis, Tp Theileria parva, Cp Cryptosporidium parvum, Nc Neospora caninum, Tg Toxoplasma gondii, chr chromosomes, LCRs low
complexity regions
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Fig. 1 Relation of proteome AT content with frequency of LCRs calculated at K= 1.9. a Overall AT content is calculated based on the proteome
of each species. b Trends in AT-rich/poor (biased) and AT-balanced (unbiased) proteins. Boundaries for nucleotide enrichment were <45 % and
> 55 %. Trends were comparable when <40 % and > 70 % boundaries were used. Species abbreviations are as in Table 1
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possibility that genomes might have different types of
low complexity regions. To explore this possibility, we
expanded this analysis to include multiple levels of
complexity (keeping the window size at 15 residues) in
increments of 0.5 from 0 to 3 (we refer to this method
as multi-threshold). This approach allowed us to recon-
struct profiles of the Apicomplexa genomes that effect-
ively describe the complexity of a genome using two
parameters: the baseline repetitiveness of each genome
identified by the amount of homopolymeric regions
(y-intercept) and the genome-specific response to increas-
ing complexity (slope) (Fig. 2). The trends of this species-
specific profiles can then be used to objectively describe
the complexity level within a genome and illuminate the
effects that parameters used to identify low complexity
regions will have on the produced sets. For example, it is
clear that each genome starts from a unique frequency of
homopolymeric regions but all genomes show a fast
increase in LCRs for thresholds K between 1.5 and 2.5.
Higher thresholds produce slower increments of proteins
with LCRs eventually reaching the maximum of at least
one LCR in every protein (frequency of 100 %) at K=3
in most species. The observed plateauing in the rate of
LCR increase suggests that the distinction between
LCRs and background genome composition is breaking
down therefore questioning a biological significance of
LCRs at these levels of complexity and providing an
upper bound for LCR detection. Despite the similarity
in trends, the profiles show unique overall amounts of
repetitiveness in each genome, as shown by the signifi-
cantly different slopes of the log-linear regressions
(ANCOVA p-value: <<0.001) (Fig. 2b). In other words,

qualitatively all genomes have similar profiles for LCR
frequency but they differ quantitatively. These analyses
were carried out with a fixed incremental value for the
window extension parameter (K,; see Methods) used by
SEG. We investigated the effect that K, might have on
the identification of LCRs and found that more permis-
sive K, values promote the merging of multiple LCRs
into a single one. However, we find that these effects
reduce the total number of LCRs by an average of only
11 % (8-18 %) for a large range of values (K=1.9, K,
ranging from 1.9 to 3). Moreover, for each K value,
different species have patterns of LCR changes that are
similar (e.g., at K=2 Pf and Pvs have a 10 % reduction
of LCRs), which means that the relative comparisons of
LCR profiles among species is unaffected by K.

At a higher taxonomic level, the three major Apicom-
pexa groups, Haemosporidiae (Pv, Pcy, Pk, Pyo, Pch, Pf),
Piroplasmida (Bb, Tp), and Coccidia (Cp, Nc, Tg), show
different complexity profiles with an increasing frequency
from Pirosplasmida to the Coccidia. Both Tp and Bb are
severely depleted in LCRs with very low frequencies
(0.03 % for Tp and 0 % for Bb) of homopolymeric regions.
Within Plasmodia (Haemosporidiae), all genomes except
Pf show intermediate LCR frequencies followed by the
Coccidia (N¢, and Tg in particular) and by Pf (Fig. 2). The
large range of LCR profiles observed among species does
not seem to be related to taxonomic or phylogenetic
clustering nor does it reflect compositional biases in
the proteome of these species. Indeed lineages with
similar AT contents (whether high AT in Pf, Pyo and
Pch: 75-78 %; or intermediate AT in Pv, Pcy, Pk, Bb,
and Tp: 55-60 %) have widely different profiles.
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Fig. 2 Species-specific frequency of LCRs for multiple complexity thresholds in Apicomplexa. a Maximum likelihood phylogenetic tree of Apicomplexa
species used for the phylogenetic contrast analysis. Pyo was excluded from this analysis because it lacked chromosome assignments for its proteins,
which was necessary for the phylogenetic contrast analysis. The phylogeny was obtained using 30 orthologous genes randomly selected from Kuo et al.
(2008). Bootstrap values are shown at each node. Species belonging to the same taxonomic group are shown (Hsp: Haemosporidia, Ppl: Piroplasmida,
Ccd: Coccidia). b LCRs profiles with complexity thresholds = 0-3 (color coding refers to individual species and taxonomic groups: blue/purple: HSP; green:
Ppl; Orange/brown: Ccd). ¢ Linear regression on the logits of LCR frequencies. Values at K= 3 were excluded because virtually indistinguishable from the
background composition

In addition to the frequency of LCRs in proteomes we
also estimated their composition relative to their back-
ground genomes, which provides a way of evaluating
their uniqueness within proteins. To do this we used a

modified version of the Simpson’s Reciprocal Index to
measure the overall difference in amino acid usage (i.e.,
diversity) between the proteome and LCRs identified by
different complexity thresholds (Se; see Methods). When
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applied to LCRs of different species detected with K =1.9,
we find that the diversity of these regions is highly variable
among species ranging from S =32 % to S =72 % (Table 1),
which means that regions identified with the same com-
plexity threshold are more (32 %) or less (72 %) unique
compared to their proteomes. Within the multi-threshold
framework, all species increase in diversity with increasing
complexity, as expected, reaching values between 60 and
86 % for K=2.5. Also by this measure, Pf has a unique
trend being the species with the lowest LCR diversity
value across all complexity thresholds, which reflects its
strong preference for asparagine use in LCRs.

Finally, we used the LCR profiles obtained by the
multi-threshold approach, to test the effect that LCRs’
composition has on our ability to discriminate between
neutral and selective evolutionary mechanisms. In the
latter scenario, no attempt is made to distinguish be-
tween positive and purifying selection but rather select-
ive mechanisms are identified based on non-random
outcomes of LCR evolution. To identify these processes
we followed previous methods and compared the fre-
quency of LCRs to the compositional bias of the prote-
ome in each species and also compared the empirical
location of the LCRs within proteins against a modeled
random distribution [17]. In these comparisons, neutral
evolution would be supported by a strong correlation
between LCR frequency and AT content of the proteome
and a random distribution of empirical LCR locations.
We found evidence against both these hypotheses with
no dependency between LCR frequency and AT compos-
ition (Kendall’s rank correlation not significantly different
from 0; see Additional file 1) and non-random distribu-
tions for heterogeneous LCRs (Table 2). In particular, we
find that for most Apicomplexa species a threshold of
~1.9 and higher corresponds to non-random distributions
of these regions within proteins, therefore suggesting an
active selective pressure.

Discussion

Interest in the evolution and function of eukaryotic
LCRs is growing, especially since their associations with
diseases and other phenotypic modifications (e.g., anti-
genic variability) were discovered [1, 6, 18—26]. Compara-
tive analyses of low complexity regions within proteins
allow for the identification of changes that may affect pro-
tein functionality, revealing possible selection-driven roles
of these regions [27-29]. Non-random patterns of changes
within LCRs are providing increasingly strong evidence
for selective pressures acting on LCRs, in opposition to
previously hypothesized neutral models of their evolution
[7-11, 17, 27, 28, 30-41]. However, despite the large
amount of information that is being collected on these re-
gions in multiple species, little is known of the effects that
the parameters used to identify these regions are playing
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on the inferred evolutionary and functional mechanisms.
To investigate this aspect, we obtained LCR profiles of
apicomplexan genomes spanning a continuum of com-
plexity levels in order to compare inferences drawn from a
single-parameter and a multi-parameter view of proteome
complexity. All our profiles are based on a window size of
15 residues that is a user-specified parameter widely used
in previous studies. While we primarily focus on this
window size as it allows us to directly compare ours and
previous results, we also explored how low complexity
profiles change with smaller and larger windows (6 and
24). As expected, the biggest impact of window size is on
the total number of LCRs detected, which is larger for
smaller windows. Therefore, plateauing of the sigmoidal
profile for W= 6 is reached at lower complexity thresholds
compared to W =15 and it is never reached at W=24. In
addition to these values, we carried out an initial analysis
with multiple window sizes around the value of 15 com-
monly used (W=12 through 18) and have found no
significant difference in species-specific profile trends
between W= 15 and the other windows (for each species
p-value>0.05 in a multiple linear regression analysis).
Therefore, the results obtained in this study with W=15
are likely to be applicable to a variety of scenarios. How-
ever, because larger changes in window size (W=6, 24)
produce significantly different LCR profiles, more analyses
are required to determine the role of W.

Our results show that all apicomplexan genomes are
repetitive in nature but that the type of repetitiveness is
species-specific. For example, some genomes (e.g., Bb)
lack homopolymeric regions but still have other types of
less repetitive heteropolymers (frequency of 66 % for
LCRs at K =2.5). This suggests that conclusions on the
overall complexity of a genome drawn and generalized
from a single threshold approach might be misleading.
The scenario of LCRs defined by K= 1.9 confirms previ-
ous findings of high frequency of these regions in Plas-
modium falciparum (49 %) but also show that these
results are not shared by other plasmodia and Apicom-
plexa in general, which have lower frequencies (7-39 %).
Such observations can lead to generalized conclusions
that may or may not be accurate. For example, based on
this result is it accurate to conclude that other apicom-
plexan genomes are, overall, less repetitive than Pf? To
answer this question we used a multi-threshold approach
to estimate LCRs. When we compare patterns of LCR fre-
quencies obtained with this approach it is clear that
depending on the complexity level under consideration
the answer changes. For example, in the case of Pf, the
multi-threshold approach confirms its uniqueness as its
genome is consistently higher in frequency of LCRs
irrespective of the complexity level used. However, other
genomes show different patterns depending on the com-
plexity threshold, such as Pch that is less complex than



Table 2 Distribution of single low complexity regions in proteins

Tax. group Sp. K=0 S (K=0) K=0.5 S (K=0.5) K=1 Soo (K=1) K=15 Sgo (K=1.5) K=19 Sgo (K=1.9) K=25 Sop (K=2.5)
Hsp Pv R (23) 0? R (47) 10.38 R (240) 26.96 R (601) 43.53 R (995) 56.79 NR (976) 76.68
Pcy R (20) 0° R (33) 11.30 R (196) 2749 R (497) 4369 R (893) 56.64 NR (1019) 76.07
Pk NR (9) 0° R(31) 13.33 R (154) 28.56 R (447) 43.78 NR (890) 55.96 NR (914) 74.23
Pyo R (21) 2.30 R (57) 740 R (286) 16.06 R (647) 28.27 NR (1208) 40.60 NR (1480) 63.35
Pch R () 0° R (18) 10.70 R (102) 25.86 R (308) 41.02 NR (746) 53.15 NR (764) 71.35
Pf R (77) 1.50 NR (406) 0.72 NR (693) 6.20 NR (876) 17.96 R (978) 31.88 NR (654) 60.29
Ppl Bb NC NC NC NC R (6) 2992 R(51) 46.26 NR (210) 59.32 NR (1068) 78.93
Tp NC NC NC NC NR (13) 39.51 R (124) 5874 R (434) 7158 NR (964) 86.64
Ccd Cp R (56) 0? R (78) 15.62 R (152) 3361 NR (240) 50.15 NR (431) 62.33 NR (811) 78.87
Nc R(11) 0? NR (191) 1.58 NR (453) 9.84 NR (825) 23.27 NR (1284) 37.74 NR (894) 65.66
Tg NR (141) 0° NR (243) 1.18 NR (574) 8.83 NR (968) 21.99 NR (1416) 36.48 NR (1313) 64.85

R random, NR non random (bold), K complexity threshold, Sy, diversity at K relative to the proteome diversity. In parenthesis are shown the total number of proteins considered in each case. Genome abbreviations are

as in Table 1. NC not computable

*These values have been forced to zero where Sy, is negative due to lower accuracy of the fitted equations at low complexity
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most plasmodia for K < 1.9 but becomes more complex at
higher K values (Fig. 2b).

While frequencies estimate the prevalence of LCRs in
genomes, composition is used to evaluate their potential
functional importance. Factors that are generally consid-
ered are the type of repetitiveness within LCRs and their
residue composition as they play a role in 3D protein
structures and hydrophilicity/hydrophobicity of specific
regions within a protein [2, 32, 42-46]. Moreover, the
relation between the amino acid composition of LCRs
and the compositional bias of their background genome
can provide clues to the evolution of these regions, as
genomes that have similar compositional biases would
be expected to have similar LCR residue preferences
under a neutral model of evolution. To explore this
possibility, we developed a new application of the eco-
logical Simpson’s reciprocal index, the diversity index,
that allowed us to correlate the composition of LCRs
and their native genomes. Using this metric we find that
LCRs identified based on the same complexity threshold
are composed of regions that are widely diverse (i.e.,
different number of amino acids represented within the
region) relative to their background proteome, such as
in the case of K=1.9 that identifies LCRs with diversity
indices ranging from 32 % (Pf) to 72 % (Tp) (a value of
100 % would mean that the total number of amino acids
used in the LCRs is equal to that used in the overall
proteome). Conversely, LCRs that have similar diversity
indices have very different complexity thresholds sug-
gesting that LCR sets identified taking into account the
compositional bias of the native genome will differ from
those obtained with absolute measures, whether based
on single or multiple thresholds.

The wide range in diversity observed within LCRs esti-
mated with both absolute and relative measures suggests
a preferential usage of amino acids in these regions that
differs from that of the proteome. This hypothesis can
be explored by comparing the diversity levels of LCRs in
genomes with similar compositional biases that, under a
neutral model of evolution, would be expected to prefer-
entially select the usage of the same amino acids based
on their codon composition. We find that this is not
true as Pfand Pyo, both with a 75 % AT content, vary in
their diversity (So, =32 and 41, respectively). Moreover,
in Pf the amino acid asparagine is preferentially used in
LCRs (41 %) compared to the background proteome
(14 %) (Grubbs’ test p<0.001) while in Pyo it is not
(Fig. 3). This difference cannot be explained by variance
within regions of the proteome as a bootstrap analysis
shows that the asparagine frequency in LCRs is not
included in the 95 % interval of the proteome variance.
Asparagine is one of the amino acids encoded by AT-
rich codons along with Lysine, Tyrosine, Leucine, and
Isoleucine so, under a neutral model, each of these
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Proteome LCR

Fig. 3 Usage of the most common amino acid (asparagine) in
two species with similar AT content (Pf and Pyo). Significant
(p-value < 0.001) preference for Asparagine usage in LCRs is
shown by the asterisk

amino acids would be expected in the LCRs at a similar
ratio as that in the proteome. We do not observe this in
the case of Pf and Pyo as both have a strong preference
in their LCRs for only one of the AT-rich amino acids
(Asparagine and Isoleucine, respectively). Since this
behavior cannot be explained by compositional biases
alone, it suggests the action of selection in determining
the composition of LCRs. It will be interesting in the
future to investigate if the relative diversity of LCRs
can be used as a reliable predictor for functional or
structural importance.

Finally, we used the LCR profiles of complexity and
diversity to determine a possible role of selection in the
evolution of LCRs by comparing their empirical location
within genes to an expected distribution under a random
(neutral) model of evolution. Our main aim for this
analysis was to compare the results from the single and
multiple threshold approach to identify possible biases
intrinsic to the set of LCRs. Using the single threshold
approach with K=1.9 we find that most of the species
analyzed show a non-random distribution of LCRs
suggesting that selection is acting on these regions (Pk,
Pyo, Pch, Bb, Cp, Nc, Tg) (Table 2). Interestingly, Pf is
not included among these species although the previous
and following complexity thresholds show LCRs as being
under selection. To investigate this result we performed
a composition-based analysis of the LCRs in Pf following
a recent study (based on a single threshold) that showed
how LCRs in Pf might be evolving under different mech-
anisms depending on their composition (e.g., High GC
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LCRs were shown to be under selection) [9]. Under this
scenario, the LCRs under selection would be expected to
show a preferential use of GC-encoded amino acids. We
compared the amino acid usage of LCRs in the three
complexity categories that differ in their evolutionary
mechanism (K= 1.5, 1.9, and 2.5) to investigate this pos-
sible preferential use of GC-rich amino acids for K=1.5
and 2.5 compared to the amino acids at K=1.9. We
found no evidence of higher GC-encoded amino acids
in the LCRs under selection leaving the result of the
seemingly neutral evolution of LCRs from K= 1.9 unex-
plained. It should be noted that, if proteins with any
number of LCRs in them were considered, the location
of LCRs in Pf at K=1.9 was not random. This result
could suggest that the observed randomness of single
LCRs could be a false negative result caused by the
smaller number of proteins considered (978 with single
LCRs vs. 9184 with single and multiple LCRs).

Irrespective of the evolutionary behavior of LCRs in
Pf, it is clear that not only the evolutionary mechanism
based on a single-threshold selection for LCRs cannot
be generalized to all species, it should also not be applied
to all categories of LCRs within a species. Indeed, when
we use a multi-threshold approach we find that as regions
become less complex their distribution within proteins is
more likely to follow a random pattern with most species
having random LCRs if identified by complexities lower
than 1.9 (Table 2). A similar result was found using the
diversity index, with more diverse LCRs (higher S,) more
likely to be under selection than less diverse regions.
Therefore, these results suggest that the current ap-
proaches to study the evolutionary mechanisms of LCRs
estimated with a single-threshold approach (e.g., K=1.9)
will promote a selection-driven view of the evolution of
these regions that is not applicable to all complexity
levels.

Our results show a connection between level of com-
plexity and evolutionary mechanisms for LCRs that has
been undetected. the multi-threshold scenario suggests
that in most Apicomplexa, regions within a protein that
start as homopolymers are most likely to evolve neu-
trally and, therefore, accumulate changes (i.e., progres-
sively increase their complexity) that might eventually
lead to the gaining of a functional role. Once this hap-
pens, selective pressures become the driving force in
their evolution thus shifting the signal that we can detect
with genome-wide analyses from neutral to selection-
driven evolution. Interestingly, we find that in a few
species (Pf, Nc, Tg) these regions seem to be evolving
under selection irrespective of their complexity status,
which raises the possibility that LCRs in these species
might be functionally different from other LCRs. Overall,
we find that the contrasting results on the evolution of
LCRs obtained by previous studies could be caused not
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only by heterogeneous sets of regions but also by signals
from multiple evolutionary mechanisms that change
through time and across species [4-7, 9-11].

Conclusions

Multi-threshold profiles of LCRs provide a new outlook
on genome complexity that allows objective genome-
wide comparisons across species. The multi-threshold
approach shows LCRs as an emergent property of
Apicomplexan genomes that is unrelated to the phylo-
genetic history and compositional bias of the species. It
also shows that LCRs evolve under different mechanisms
(selection or neutral) based on their complexity and
diversity. The correlation between LCR complexity and
evolution can explain the difficulties in identifying a
unifying evolutionary principle for these regions and
support the use of comprehensive profiles to investigate
the evolution of genome complexity.

Methods

Identification of LCRs

We analyzed 11 representative Apicomplexa genomes
obtained from the publicly available databases PlasmoDB
(v. 8.2), CryptoDB (v. 4.6) and EupathDB (v. 2.13): Plas-
modium vivax Salvador-I (Pv), P. cynomolgi strain B
(Pcy), P. knowlesi strain H (Pk), P. chabaudi chabaudi
(Pch), P. yoelii yoelii 17XNL (Pyo), P. falciparum 3D7
(Pf), Babesia bovis T2Bo (Bb), Theileria parva strain
Muguga (Tp), Cryptosporidium parvum Iowa II (Cp),
Neospora caninum (Nc), and Toxoplasma gondii GTI
(Tg). For each genome we identified low complexity
regions in their proteins using the algorithm imple-
mented in the program SEG [13, 47]. This program
identifies and extracts low complexity regions within a
protein according to two user-specified thresholds (K;
and K,). Complexity of regions of length equal to the
specified window size (e.g., 12) is calculated and com-
pared to the first user-defined threshold (K;): if lower,
they are reported as low complexity regions and the
window is extended on both sides as long as the
complexity of the extended regions remains lower than
K,. For the single threshold approach, we used fixed
values of W=15 and K; =19 as has been done previ-
ously [15, 17]. For the multi-threshold approach, we
used a variety of parameter combinations: for the window
size parameter we halved and doubled the default value in
SEG (6 and 24), used a window of 15 sites, and also re-
peated the analyses with W=12-18. Then, for the three
main window sizes (6, 24, and 15), we investigated the
effect of the complexity threshold (K;) by altering this
parameter from O to 3 at 0.5 intervals (Additional file 2).
For W =15, we also altered K; at 0.1 intervals and found
comparable trends. We tested the effect of K, by increas-
ing it from 0.1 to 3.3 in 0.1 steps. Because the changes in
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LCR distribution within proteomes caused by different K,
values did not affect the trend of the frequency of LCRs
we calculated for each K; a value of K;=K;+0.3 as
suggested by default and used previously [7, 9, 27]. In the
results and discussion section we refer to K; as K. Initial
analyses showed evidence that LCRs at K=3 are not
significantly different from the proteome composition as
evidenced by the presence of LCRs in 90-100 % of the
proteins; therefore all analyses are conducted with K
values up to 2.5.

Frequency of LCRs

A plot of the percentage of proteins with LCRs vs. the
complexity threshold (K;) showed a sigmoidal dependence
of these two quantities. Therefore, we performed a linear
regression on the logits of the LCR frequencies, ie, if p is
the frequency of LCRs, logit p =log (p/(1-p)). The linear
regression was performed with SAS v. 9.2 for each genome
separately [48]. For each linear regression, an F-test was
performed on a 5 %-significance level to assess the model’s
fit (tests for non-zero regression slope). Moreover, the
coefficients of determination (R-square and adjusted R-
square) were calculated to explore the proportion of
explained variation. Deviations from zero of estimates
of the regression line’s slope and intercepts were tested
using a t-test at a 5 %-significance level. If p(K;)
denotes the percentage of LCRs for a given K; (the de-
pendence on K, is ignored), then logit p(K;) ~ a + b*K},
where a and b are the estimates of the intercept and
slope of the linear regression. The intercept, a, is the
logit-percentage of homopolymeric LCRs (regions of
low complexity composed by only one amino acid). The
slope, b, specifies the changes in the frequency of de-
tectable LCRs in response to increasing K;. The slope
allows us to describe how identifiable LCRs are against
the complexity of the background for a given genome
within a range of K; values in this case but it could be
applied to any other measure. Such observed low com-
plexity functions are compared among genomes by an
analysis of covariance (ANCOVA), with K; as covariate.
We also compared the logits obtained with window size
equal to 15 with those obtained with window sizes
between 12 and 18, 6, and 24 using a multiple linear
regression analysis in R [49].

Diversity of LCRs

As an additional measure of complexity, we used the
Simpson’s Reciprocal Index (S) to estimate differences in
amino acid compositions for LCRs with increasingly
higher complexity thresholds and also for the full prote-
ome. In ecology, this index is used to measure the species
diversity in a biological community in terms of the prob-
ability of randomly sampling two individuals from the
same species. In our investigation, we adapted it to use
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amino acids instead of species and proteomes instead of
biological communities. Thus, we measure the probability
of re-sampling the same amino acid by chance in LCRs
. ) 20 n;(n-1)
defined at a given threshold (D = Zi: N N—l))
where #; is the total number of amino acid i in all LCRs
of a given genome and N is the combined length of all
LCRs in the same genome and take the reciprocal of
the Simpson’s Diversity index D (S=1/D). We repeat
this procedure also for the proteome and compare the
spread of the diversity between the proteome and the
subset defined by the complexity threshold to deter-
mine the variation in amino acid usage at these two
levels (S = 100/((Sprote0me — Sko)/Ski — Sko))) where
Sko is the diversity for K; =0 and S; is the diversity
at the complexity threshold K; =i. Conversely, if we
want to find the set of LCRs that collectively corre-
sponds to a user-defined percentage (e.g., Sy =25 %)
of the amino acids diversity of the proteome, we cal-
culate the complexity threshold that corresponds to Se
using a linear or quadratic best fit line (Additional file 3).
Finally, to assess the significance of differences in the
amino acid usage of proteomes and LCRs, we applied the
Grubbs’ test to identify outliers within a normally distrib-
uted population. In our case, the population was com-
posed of the differential frequencies of amino acid usage
in LCRs compared to the proteome and was found to be
normally distributed. We also created 2000 bootstrapped
sets, and the corresponding 95 % confidence interval,
from the proteome of the same size as the identified LCR
set to measure the variance in amino acid usage within
the proteome. We selected the Simpson’s index because it
does not assume an equal probability of all categories or
the presence of all categories in all groups, which — in the
case of amino acids — would be violated (e.g., Cysteine is a
much rarer amino acid than Asparagine). However, we
also tried a second index in a subset of analyses, the
Berger-Parker, and found similar trends.

Tests of evolutionary mechanisms

To investigate the role of selection in the evolution of
LCRs, we performed two sets of tests. First, we calculated
the position of each LCR within each protein that was
divided into three segments of equal length (N-terminus,
middle, and C-terminus). Following Huntley and Clark
[17], in the absence of selective constraints, we would
expect LCRs to be randomly distributed within the protein
based on the length of the LCR () and of the protein (L).
The probability of the mid-point of an LCR falling into
one of the three segments was calculated as follows:
middle section (L/3)/(L - [); each of the termini (L/3 - 1/2)/
(L -1). This distribution was tested against the empirical
distribution of LCR midpoints by a chi-square goodness-
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of-fit test. This simple null-hypothesis distribution impli-
citly assumes one LCR per protein, or that the protein
length is large enough that the probability of two or more
LCRs interfering with each other’s location in the same
protein is negligible. However, many proteins harbor more
than one LCR and, in some cases, their positions within a
protein cannot be assumed to be independent from each
other. Therefore, we performed the chi-square test only for
proteins with single LCRs although this resulted, in a few
cases, in datasets too small to resolve the test. To account
for the small dataset sizes, we checked trends on un-
weighted and weighted chi-square results, with the last
ones obtained by scaling the chi-square value to the num-
ber of genes in each category, and found similar patterns.

Second, we tested the neutral evolution hypothesis by
comparing the frequency of LCRs to the compositional
bias of each proteome and determine the dependency,
or lack thereof, of these two parameters from each other
as measured by the Kendall rank correlation coefficient
[50]. We also calculated Spearman’s and Pearson’s coeffi-
cients and obtained identical results. We use simple
bootstrap confidence intervals based on 2000 bootstrap
replicates to check if the correlation coefficient between
AT content and LCR frequency is significantly different
from 0 [51]. To control for phylogenetic relationship, we
carried out a phylogenetic contrast analysis performed
using Mesquite and the PDAP module [52, 53]. For each
genome, we analyzed each chromosome separately by
calculating the chromosome AT content and LCR
frequency. A total of 110 data points were obtained (14
chromosomes for Pv, Pcy, Pk, Pch, Pf, Nc, and Tg; 8
chromosomes for Cp; for Bb and Tp genes were assigned
only to two of the four chromosomes). The genome of
Pyo was not used because its proteins were lacking
chromosome assignment information at the time of this
study. The phylogeny and branch lengths used were
obtained with a maximum likelihood (ML) tree-building
method. The best protein substitution model (rtREV +
F + G + 1) was identified in MEGA v5.1 [54] and used to
obtain the phylogeny. Thirty orthologous genes from
Kuo et al. [55] were randomly selected, aligned and
concatenated for our genomes. The orthologs for spe-
cies missing from the original Kuo et al. dataset were
added using OrthoMCL v.2.05 and MEGA [56]. The
phylogeny obtained was comparable to that of Kuo et
al. with the only difference being the clustering of Cp
with Tg in our phylogeny ([55]; Fig. 2a). In order to
carry out the phylogenetic contrast analysis, each
lineage was divided into its chromosomes by assigning
a virtually negligible branch length to each chromo-
some (0.00001). Inter-species branch lengths were ob-
tained from the ML phylogeny.

Then we tested the correlation of LCRs with the AT
content of the proteome overall and proteins categorized
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into two groups: compositionally biased and unbiased.
Thresholds for the two groups were <45 % and >55 %
for the biased proteins and between 45 and 55 % for the
unbiased ones. We also repeated the analyses with
threshold at 40 % and 70 % and found comparable
results for the genomes that could be compared (species
Py, Pk, and Bb had too few proteins in the biased
category). We then compared the number of LCRs in
proteins belonging to these two categories. Although
analyses were conducted on all genomes, a few of them
(Pk, Pyo, Tp, Cp) were excluded because the number of
proteins in the unbiased category was less than 10 % of the
number of biased ones.
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