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Heterogeneous natural selection on oxidative
phosphorylation genes among fishes with
extreme high and low aerobic performance
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Abstract

Background: Oxidative phosphorylation (OXPHOS) is the primary source of ATP in eukaryotes and serves as a
mechanistic link between variation in genotypes and energetic phenotypes. While several physiological and
anatomical factors may lead to increased aerobic capacity, variation in OXPHOS proteins may influence OXPHOS
efficiency and facilitate adaptation in organisms with varied energy demands. Although there is evidence that
natural selection acts on OXPHOS genes, the focus has been on detection of directional (positive) selection on
specific phylogenetic branches where traits that increase energetic demands appear to have evolved. We
examined patterns of selection in a broader evolutionary context, i.e., on multiple lineages of fishes with extreme
high and low aerobic performance.

Results: We found that patterns of natural selection on mitochondrial OXPHOS genes are complex among fishes with
different swimming performance. Positive selection is not consistently associated with high performance taxa and
appears to be strongest on lineages containing low performance taxa. In contrast, within high performance lineages,
purifying (negative) selection appears to predominate.

Conclusions: We provide evidence that selection on OXPHOS varies in both form and intensity within and among
lineages through evolutionary time. These results provide evidence for fluctuating selection on OXPHOS associated
with divergence in aerobic performance. However, in contrast to previous studies, positive selection was strongest on
low performance taxa suggesting that adaptation of OXPHOS involves many factors beyond enhancing ATP
production in high performance taxa. The broader pattern indicates a complex interplay between organismal
adaptations, ATP demand, and OXPHOS function.

Background
Physiological processes may serve as mechanistic links
between genotypes and organismal phenotypes. Accord-
ingly, adaptations in genes of energy metabolism
pathways may facilitate the evolution of organismal
structures and life habits with diverse energy require-
ments. Proteins encoded by the mitochondrial genome
serve as core subunits of the oxidative phosphorylation
(OXPHOS) system, the primary source of ATP in
eukaryotic cells. Consequently, organismal traits with
differing ATP demands may be influenced by adaptation
in mitochondrial genomes [1–5]. Our understanding of
patterns and rates of adaptive change in mitochondrial

genomes remains limited despite extensive use of mito-
chondrial genes as molecular markers in evolutionary
studies [6] and the important role of mitochondria in
many human pathologies [7]. Although there is ample
evidence of natural selection acting on mitochondrial
genes [8–15], the functional significance of adaptive
mitochondrial change is rarely known.
Evidence of positive selection on OXPHOS genes has

been associated with evolution of a variety of energetic-
ally demanding characteristics (reviewed in [16]), in-
cluding origin of large brains in anthropoid primates
[17], powered flight in bats [18], and adaptation to cold
environment in polar bears [19]. These suggest a signifi-
cant role for OXPHOS in organismal adaptation, and be-
cause divergence among lineages often involves traits with* Correspondence: rbroughton@ou.edu
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different energy usage, OXPHOS evolution may be an im-
portant factor in the diversification of life.
OXPHOS functional efficiency may be particularly im-

portant to energy intensive processes such as locomo-
tion. Variation in locomotive performance of fishes is
among the most extreme among vertebrates, ranging
from largely sedentary filter feeders and sit-and-wait
predators to highly migratory species and active pelagic
foragers. For example, seahorses and flounders spend
much of their time nearly motionless, while tunas and
marlins are “high-performance” swimmers that exhibit
high aerobic metabolism and prolonged fast swimming
[20, 21]. Highly-active fish taxa exhibit many morpho-
logical and physiological adaptations that enhance swim-
ming performance (reviewed in [22]). Such adaptations
include modifications of body shape and hydrodynamics
[23–25], swimming form and mechanical kinematics
[26–28], muscle composition [29–31], metabolic rates
[32], heart volume and aerobic capacity [32–34], and
mitochondrial structure and concentration [35]. How-
ever, much less is known about the molecular adapta-
tions that influence organismal performance.
At the molecular level, expression levels of proteins dir-

ectly involved in energy metabolism may be increased in
highly mobile fish species. Tunas and marlins, which have
higher cruising speeds than other active fishes [21], have
been shown to have elevated myoglobin [36] and higher
concentrations of metabolic enzymes in heart and skeletal
muscle (reviewed in [36]). Elevated activities of citrate syn-
thase (which catalyzes the first reaction of the Krebs cycle),
carnitine-palmitoyl transferase, and 3-hydroxy-o-acyl-CoA
dehydrogenase (rate-limiting enzymes in fatty acid oxida-
tion), reflect the increased aerobic metabolic potential of
scombrid fishes [35]. In addition, OXPHOS genes are dif-
ferentially expressed between morphs of lake whitefish that
differ in activity levels in foraging behavior [37].
Alternatively, or in addition, to variation in gene ex-

pression and post-transcriptional modification, diver-
gent energy demands may lead to adaptive evolution in
the structure of specific OXPHOS proteins. Variation
in OXPHOS proteins could influence the efficiency of
ATP production by affecting how tightly electron trans-
port and proton pumping are coupled in the electron
transport chain. Modifications in the structure of
OXPHOS complexes I–IV caused by amino acid substi-
tutions in constituent proteins could affect “slip reac-
tions”, resulting in more or less protons pumped by the
electron-transport-chain for each electron pair trans-
ferred (the H+/2e ratio) (reviewed in [38]). Alterna-
tively, substitutions in proteins of ATP synthase could
modify the amount of ATP made for each proton
driven through it (the H+/ATP ratio) [38]. These phe-
nomena are consistent with prior reports of positive se-
lection in the cytochrome c oxidase genes of the high

performance billfishes [39, 40], the MT-ND2 and MT-
ND5 genes of some migratory Pacific salmon [41], and
MT-ND2, MT-ND4 and MT-ND5 genes of pelagic At-
lantic herring [42].
Here, we investigate patterns of adaptation on OXPHOS

genes in diverse group of fish taxa with different swim-
ming performance. We hypothesized that positive natural
selection would affect OXPHOS efficiency among diver-
gent lineages with long-term differences in ATP demand.
Thus molecular adaptation was predicted to be associated
with locomotor intensity (speed, duration and frequency).
We examined evidence for positive selection on all mito-
chondrial OXPHOS genes from six fish groups that can
be classified into three different swimming performance
categories based on general locomotion patterns [22].
Tunas and billfishes represent high performance swim-
mers, mackerels and jacks represent moderate (or
moderate-high) performance swimmers, and flatfishes and
seahorses + pipefishes represent low performance swim-
mers. Pelagic fishes exhibit highly aerobic locomotion with
greater endurance than sedentary fishes, and among the
pelagic fishes, tunas and billfishes may maintain the high-
est speeds for the longest duration [22]. Seahorses and
pipefishes exhibit much lower frequency, duration, and
speed of locomotion, while flatfishes exhibit lower fre-
quency, and sustained speed. These factors as well as their
unusual swimming forms and kinematics suggest that
much less of their total energy budget is devoted to loco-
motion, so we categorized them as low-performance
swimmers. Recent phylogenetic analyses [43–45] indicate
that these taxa are arranged into two monophyletic groups
each containing representatives of all three performance
classes (Fig. 1). Two previous studies (39, 40) examined
positive selection in some high-performance fishes that
are included in this study. We extended these studies by
including all 13 mitochondrial OXPHOS genes and exam-
ined the evidence of positive selection on multiple phylo-
genetic branches, including six independent fish
lineages as well as some ancestral branches. In contrast
to previous studies, this approach allowed us to make
mitochondrial genome-wide assessments of selection
across taxa exhibiting a wide range of locomotor per-
formance. We also inferred functional significance from
the position of positively selected amino acid sites in
the 3-dimensional structure of specific enzyme com-
plexes. Our results indicate that selection on OXPHOS
genes is indeed associated with divergent swimming
habits among these fishes. However, selection is hetero-
geneous over evolutionary time and positive selection is
not strictly associated with high performance taxa.
Thus we provide new insights on the evolution of
swimming diversity in fishes and the adaptation of
OXPHOS genes relative to organismal energetic per-
formance on a broad phylogenetic scale.
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Methods
Phylogeny reconstruction
We acquired sequences of 13 mitochondrial protein genes
(all of them encode subunits in OXPHOS) from the
representative species of each fish group from National
Center for Biotechnology Information (NCBI) GenBank
(Additional file 1: Table S1). To complement the mito-
chondrial genes, we added 7 nuclear genes which are
commonly used in fish phylogenies (obtained from NCBI
GenBank) or were developed as part of the Fish Tree of
Life project [46]. These genes are rag1 (recombination ac-
tivating protein 1), rag2 (recombination activating protein
2), rhodopsin, tmo4c4 (anonymous, see [47]), zic1 (zinc
finger protein 1), myh6 (myosin, heavy chain six), and
btbd7 (BTB domain containing seven). For species with-
out available sequences, we designed primers (Additional
file 1: Table S2) and amplified and sequenced specific
genes via standard polymerase chain reaction (PCR). PCR
product was sequenced in both forward and reverse

directions using ABI BigDye terminator chemistry and an
ABI Prism 3130 XL Genetic Analyzer. Sequences have
been deposited in GenBank (Additional file 1: Table S3).
Particular genes for a few species could not be amplified.
In such cases, sequences were obtained from congeners,
yielding 19 “chimaeric” individuals. The 20 genes (13
mitochondrial and 7 nuclear) were concatenated for
phylogenetic analyses [48].
Maximum likelihood trees (with 1000 bootstrap rep-

licates) were estimated in the program RAxML v.7.0.4
[49]. Bayesian phylogenetic analysis was performed
with MrBayes v.3.1 [50, 51]. Swimming performance
states were reconstructed from extant taxa with parsi-
mony and likelihood using outgroups from [44] in
Mesquite [52].

Analysis of patterns of natural selection
Sequences of 13 mitochondrial OXPHOS genes were
used to examine patterns of natural selection. We first

Fig. 1 Phylogeny and swimming performance states of fish groups examined in this study. Swimming performance was reconstructed with
parsimony (shown), as well as maximum likelihood, which was qualititatively similar, with outgroups from Betancur-R et al. (2013). Branch colors
represent performance levels as follows: white, low performance; green, moderate performance; black, high performance
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ran a series of random sites models (M0, M1a, M2a, M3,
M7, M8a and M8) implemented in Codeml of PAML v.4.7
[53]. Likelihood ratio tests (LRTs) were conducted on the
likelihood values produced by specific pairs of models: M3
vs. M0, M2a vs. M1a, M8 vs. M7, and M8 vs. M8a. Next
we ran branch-site models on designated branches with
three different starting ω values (0.1, 1.0, and 4.3). We had
no prior knowledge of which branch(es) could have expe-
rienced positive natural selection (except for branches
leading to tunas and billfishes); therefore, we designated
one branch (from b1-25 in Fig. 2) as the foreground
branch in each test. LRTs were performed to determine if
the more complex model A is significantly better than the
null model. In the branches that showed evidence of posi-
tive selection, we used Bayes empirical Bayes (BEB) to cal-
culate the probability of amino acid sites are under
positive selection.
The 13 mitochondrial gene sequences were also ana-

lyzed using TreeSAAP [54], which measures the selective
influences on 31 structural and biochemical amino acid
properties, and performs goodness-of-fit and categorical
statistical tests. We used a sliding window size of 20
amino acids (Additional file 1: Figure S2). Because of the
large number of sites under positive selection, we only
show sites with significance when its p <0.001 for clarity.
Then we used a sliding window size of 1 and one amino
acid site is defined as being positively selected as long as
one of the 31 properties showed significance.

Mapping positively selected amino acid sites onto
3-dimensional (3D) crystal protein structure
The MT-ND genes that encode subunits in OXPHOS
complex I are considered highly conserved between pro-
karyotes and vertebrates [55]. We inferred the potential
function of positively selected amino acid sites belonging
to MT-ND subunits by mapping them onto the 3D crys-
tal structure of Thermus thermophiles (PDB ID: 4HEA),
a Gram negative eubacterium [56]. We mapped the posi-
tively selected sites of MT-CYB onto chicken bc1 com-
plex C chain (PDB ID: 1BCC) crystal structure because a
study suggests the structure of the catfish MT-CYB pro-
tein resembles that of chickens [57]. Similarly, we
mapped the positively selected sites onto bovine MT-
CO1-3 subunits 3D structure (PDB ID: 1OCC) because
of the highly conserved structure from bacteria to bo-
vine [58, 59]. All the mapping was conducted using Gen-
eious pro (v.7.0).

Results
Phylogeny and ancestral state reconstruction
Both maximum likelihood and Bayesian analyses gener-
ated the same topology (Fig. 2) regardless of partition
scheme with relatively high bootstrap support and pos-
terior probabilities (see Additional file 1: Figure S1). The

recent comprehensive phylogenetic analysis of [44] resolved
the phylogeny of bony fishes to the level of taxonomic fam-
ily, while a study by [45] focused on relationships of several
pelagic fish groups. Our results are consistent with both of
these studies for the taxa in common to each. Specifically,
we recovered two monophyletic groups, each containing
taxa with low, moderate, and high swimming performance.
In one group, the tunas and mackerels (Scombriformes) are
sister to the seahorses and pipefishes (Syngnathiformes),
while the series Carangaria contains the billfishes (Istio-
phoriformes), jacks (Carangiformes), and flatfishes (Pleuro-
nectiformes) [44] (see also Phylogenetic Classification of
Bony Fishes–Version 3: www.deepfin.org).
Swimming performance states were reconstructed from

extant taxa with parsimony and likelihood using out-
groups from [44]. These results of reconstructed swim-
ming performance suggest that the ancestors of each
major group were low performance swimmers (Fig. 1), al-
though incomplete taxon sampling of related groups could
mislead the reconstructions. Even if the ancestors were
moderate performance swimmers, it is clear that high per-
formance swimming evolved independently in the tunas
and billfishes.

Analysis of positive selection
Positive selection under site models cannot identify par-
ticular branches where positive selection has occurred,
but they can detect positive selection among sites where it
occurs as long-term trends or among multiple branches
separated on the tree. A significant difference was de-
tected between model M0 and M3, which suggests ω is
variable among sites (Table 1). We used three model pairs
to test for positive selection: M1a vs. M2a, M7 vs. M8, and
M8a vs. M8. Neither M2a-M1a nor M8a-M8 showed sig-
nificant difference. However, M8-M7 showed a significant
difference, suggesting some positive selection signal on
certain sites somewhere on the tree.
Table 2 lists the resulting likelihood values, likelihood

ratio tests (LRTs), and estimated model parameters for
each branch examined under branch-site models. We per-
formed a false discovery rate analysis [60] on these results
where we performed 20 tests and recovered 12 positive re-
sults. All 12 positive results had a q value of 0.03 or less,
and the probability of a false positive among them is 0.36.
Because this is less than 1.0, no false positives are ex-
pected. The number of amino acid sites on each branch
inferred to be under positive selection via Bayes Empirical
Bayes is provided Additional file 1: Table S4 (the identity
of these sites and more details are provided in Additional
file 1: Table S5). These results showed substantial differ-
ences in natural selection on lineages leading to taxa with
different swimming performance. We found significant
evidence of positive selection on the ancestral lineages of
all three performance categories (branches b2, b17, b3,
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Fig. 2 (See legend on next page.)
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and b4 in Fig. 2), lineages leading to moderate-performance
swimmers (b6 and b13), and low-performance swimmers
(b16, b23, b24, b25, and b11). Conversely, strong purifying
(negative) selection was identified on lineages of high-
performance swimmers (b7, b8, b9, b10, b14, and b18).
Fourteen sites that appeared to be positively selected occur
on multiple branches; however, they are not associated with
branches leading to a particular performance group (see de-
tails in Additional file 1: Table S5).
The above tests assess the strength of the evidence

for positive selection rather than the strength of selec-
tion itself. An indicator of the strength of positive selec-
tion on a branch can be obtained from the product of
the proportion of sites having ω > 1 and the estimated
ω value for those sites. In Fig. 2, the branch width is
shown proportional to the strength of positive selection
based on this measure (except for b12, b23 and b24
which had extremely high ω and a cap of ω = 50 is
used). Among those branches harboring sites under
positive selection, branches ancestral to more than one
swimming category (b2, b3, b4, b12, b17) and branches
leading to low-performance fishes (b11 and b23)
exhibited greater selection than branches leading to
moderate-performance fishes (b6 and b13), and sub-
stantially more than any branches associated with high-
performance fishes. This is counter to the notion that
high performance swimmers will have been most
strongly influenced by positive selection for enhanced
OXPHOS performance assuming enhanced OXPHOS
efficiency is the major contributor to high performance.

However, there are alternative contributors to high per-
formance such as increased mitochondrial density per
tissue mass, more closely packed inner mitochondrial
membrane cristae, increased metabolic enzyme activity,
increased expression of genes involved in a number of
biological pathways such as glycolysis, protein biosyn-
thesis, and cytoskeletal structure. Under any of the later
scenarios, an increase in OXPHOS efficiency might not
be necessary for high performance.
The physico-chemical properties analysis as implemented

by TreeSAAP [54] does not provide inferences about par-
ticular branches on the phylogeny, but does provide infor-
mation about changes of particular amino acid sites across
the whole tree. A large number of amino acid sites were
identified as having substitutions with significant physico-
chemical differences; presented in Additional file 1: Figure
S2 and Table S4. A mitochondrial genome-wide (only the
protein coding genes) sliding window analysis (window
size = 20 amino acids) revealed that the vast majority of
windows contained substitutions that exhibited between
0 and 15 properties with significant differences (Additional
file 1: Figure S2). Windows with substitutions exhibiting be-
tween 15 and 30 significant properties occurred at much
lower frequency. Although windows with the greatest num-
ber of significant property differences were observed in the
genes forMT-ND1, MT-CO1, MT-ND4 andMT-CYB, there
were no other apparent patterns of variation in the distribu-
tion of such sites across the genome (Additional file 1:
Figure S2). Positively-selected sites identified by both
methods are summarized in Additional file 1: Table S4, S5.

Table 1 Results of PAML Random Sites models

Model lnL Parametersa Null LRTs p

ω0/p ω1/q ω2/ ωp

M0 −191327.6225 0.03421

M1a −189631.0183 0.02838 (94.9 %) 1 (5.1 %)

M2a −189631.0190 0.02838 (94.9 %) 1 (5.1 %) M1a 0

M3 −184769.7796 0.00609 (72.6 %) 0.11443 (27.4 %) 79.11600 (0) M0 13115.6857 **

M7 −184829.5771 0.22705 4.62358

M8a −184813.0237 0.23248 5.02542 1.00000

M8 −184813.0237 0.23248 5.02544 1.00000 M7 33.1068 **

M8a 0

lnL; log likelihood;
LRTs represents the likelihood ratio tests; 2 * (lnL(Model) – lnL(Null)).** represents p < 0.01
aω values of each site class are shown for models M0-M3 (ω0 – ω2) with the proportion of each site class in parentheses. For M7-M8, the shape parameters, p and
q, which describe the beta distribution are listed

(See figure on previous page.)
Fig. 2 Positive selection analysis on mitochondrial genes on each branch (arbitrary labels, b1-b24, appear above each branch). The number below
each branch represents the number of positively selected sites with posterior probability higher than 0.8. The number in parentheses is the product of
proportion of sites having ω > 1 and ω2 for that branch, as an indicator of the strength of positive selection. The width of the branches is proportional
to the strength of positive selection (because ω2 for b12 and b24 is extremely high, the width was capped for ease of visualization). Labled branches
without values listed have no evidence of positive selection

Zhang and Broughton BMC Evolutionary Biology  (2015) 15:173 Page 6 of 15



Table 2 Results of PAML branch-site model analysis

Branch Model A Null model LRTs Site class 0 1 2a 2b

b1 −189631.0183 −189631.0183 0 Proportion 0.94985 0.05015 0.00000 0.00000

Foreground ω 0.02838 1.00000 1.00000 1.00000

b2 −189619.8114 −189623.914 8.2052** Proportion 0.94260 0.04932 0.00769 0.00040

Foreground ω 0.02825 1.00000 18.30494 18.30494

b3 −189710.2567 −189714.0692 7.6250** Proportion 0.92062 0.04856 0.02927 0.00154

Foreground ω 0.02811 1.00000 5.60205 5.60205

b4 −189591.2640 −189598.5732 14.6183** Proportion 0.92700 0.04823 0.02355 0.00123

Foreground ω 0.02799 1.00000 9.01795 9.01795

b5 −189728.0764 −189729.5338 2.9148 Proportion 0.91976 0.04869 0.02997 0.00159

Foreground ω 0.02824 1.00000 292.74200 292.74200

b6 −189719.7435 −189722.2222 4.9573* Proportion 0.93956 0.04997 0.00994 0.00053

Foreground ω 0.02824 1.00000 5.43888 5.43888

b7 −189738.4458 −189738.4458 0 Proportion 0.94477 0.05030 0.00468 0.00025

Foreground ω 0.02845 1.00000 1.00000 1.00000

b8 −189738.5873 −189738.5873 0 Proportion 0.94946 0.05054 0.00000 0.00000

Foreground ω 0.02848 1.00000 1.00000 1.00000

b9 −189738.5873 −189738.5873 0 Proportion 0.94946 0.05054 0.00000 0.00000

Foreground ω 0.02848 1.00000 1.00000 1.00000

b10 −189738.5873 −189738.5873 0 Proportion 0.94946 0.05054 0.00000 0.00000

Foreground ω 0.02848 1.00000 1.00000 1.00000

b11 −189613.4925 −189622.0967 17.2084** Proportion 0.94688 0.04932 0.00362 0.00019

Foreground ω 0.02831 1.00000 79.27458 79.27458

b12 −189615.9415 −189619.0732 6.7338** Proportion 0.92922 0.04889 0.02080 0.00109

Foreground ω 0.02820 1.00000 999.00000 999.00000

b13 −189610.5139 −189616.7321 12.4364** Proportion 0.94411 0.04933 0.00624 0.00033

Foreground ω 0.02821 1.00000 8.65776 8.65776

b14 −189734.9950 −189736.0673 2.1446 Proportion 0.94724 0.05043 0.00221 0.00012

Foreground ω 0.02842 1.00000 4.83612 4.83612

b16 −189624.9748 −189628.011 6.0725** Proportion 0.94529 0.04967 0.00479 0.00025

Foreground ω 0.02827 1.00000 7.66238 7.66238

b17 −189621.7633 −189627.8443 12.1622** Proportion 0.94863 0.04955 0.00173 0.00009

Foreground ω 0.02835 1.00000 336.12589 336.12589

b18 −189738.5873 −189738.5873 0 Proportion 0.94945 0.05055 0.00000 0.00000

Foreground ω 0.02848 1.00000 1.00000 1.00000

b23 −189618.7575 −189625.3146 13.1142* Proportion 0.93161 0.04861 0.01879 0.00098

Foreground ω 0.02817 1.00000 999.00000 999.00000

b24 −189578.5777 −189597.2838 37.4121** Proportion 0.90294 0.04769 0.04689 0.00248

Foreground ω 0.02828 1.00000 999.00000 999.00000

b25 −189591.1234 −189603.6533 25.0598** Proportion 0.93264 0.04910 0.01735 0.00091

Foreground ω 0.02815 1.00000 9.15193 9.15193

Estimated likelihood values under model A (allowing positive selection) and the null model (no positive selection), likelihood ratio tests (LRTs), and estimated
parameters of model A. LRT critical values 3.84 at p = 0.05 (*) and 5.99 at p = 0.01 (**). Branches are as identified in Fig. 2

Zhang and Broughton BMC Evolutionary Biology  (2015) 15:173 Page 7 of 15



The two lineages, seahorses and flatfishes, on which posi-
tive selection was most pronounced, have also experienced
extraordinary morphological evolution [61, 62]. Thus, it is
possible that the positive selection signal detected on mito-
chondrial OXPHOS genes in these lineages is unrelated to
energy demands, but is simply a consequence of rapid
genomic evolution in these groups. The probability of
nucleotide change is indeed higher in these two line-
ages than for the other major groups as indicated by
five nuclear genes that are not directly involved in
OXPHOS system (rag1, rhodopsin, tmo4c4, mhy6, and
zic1). However, a positive selection signal was found for
only two genes, rag1 and rhodopsin, on one branch
leading to flatfishes (LRTs = 72.53, ω = 50.88, three sites
199, 425, and 605 under selection with bayes empirical
bayes (BEB) probability of 0.684, 0.501, and 0.958, re-
spectively). Because there was no consistent pattern of
selection on these non-OXPHOS genes, it is suggested
that the positive selection detected on mitochondrial
genes does not reflect a genome-wide pattern of diver-
gence but may be related to adaptation of OXPHOS
efficiency.

Structural position of positively selected sites
The position of particular amino acids in the tertiary and
quaternary structure of a protein may allow inferences
about the function of individual residues. In particular,
those sites near the catalytic core or other functionally im-
portant regions, or those in physical proximity (likely to
interact with) other amino acids, would seem most likely
to influence protein function.
Complex I performs the first step and is the largest and

most complicated enzyme complex in the OXPHOS path-
way. It catalyzes the transfer of two electrons from NADH
to ubiquinone (Q), coupled to the translocation of four
protons across the inner mitochondrial membrane. It is
also a major source of reactive oxygen species in mito-
chondria. Complex I exhibits an L-shaped architecture
with a membrane arm and a hydrophilic peripheral arm
that protrudes into the mitochondrial matrix (Fig. 3a).
The membrane arm consists of 7 core mitochondrial
NADH dehydrogenase (MT-ND) gene encoded subunits.
Site 12, one of the sites identified in subunit ND1 as

being positively selected (Fig. 3b), is included in the re-
gion associated with MELAS (mitochondrial encephalo-
myopathy, lactic acidosis, and stroke-like episodes)/
DEAF enhancer/hypertension [63] and sudden infant
death [64]. The other positively selected sites, 172 and
192, are in the alpha helix close to a critical site, 184,
that is associated with adult onset dystonia [65] (in yel-
low in Fig. 3b).
Subunit ND5 contains an unusual structural element,

the helix HL (see enlarged Fig. 3c, indicated in yellow),
that extends nearly the entire length of the membrane

domain and coordinates conformational changes. On
the opposite side of the membrane domain, a series of
β-hairpins (βH element) (indicated in white in Fig. 3c,
d) from neighboring subunits contribute to conform-
ational changes and stability of the complex. Positively-
selected sites include 515 [ND5], which is adjacent to
helix HL; 53 [ND5] and 54 [ND4] are in βH elements;
63 [ND5] is in the seven-residue loop connecting two
βH elements; 86 [ND2] (not shown here) and 71 [ND5]
are in regions (including residues 83 [ND2] and 88
[ND5]) demonstrated to have significant negative ef-
fects on function [66].
In addition to the sites listed above, there are several

sites that appear to be under positive selection, yet their
location in the molecular structure does not provide any
clear suggestion of functional significance. These resi-
dues could be involved in stabilizing the tertiary or qua-
ternary structure of the various multi-subunit complexes
or facilitate their assembly. These include residues 199
[ND5], 269 [ND5], 425 [ND5], 515 [ND5], 600 [ND5],
20 [ND4], 86 [ND2], 168 [ND2], 359 [ND2], 360 [ND2],
408 [ND2], 23 [ND4L], 4 [ND6], 8 [ND6], 11 [ND6], 90
[ND6], 138 [ND6], 94 [ND3] and 98 [ND3] (not shown
in figures for clarity).
Complex III is an intermediate component of the re-

spiratory chain, which transfers electrons from reduced
ubiquinone to cytochrome c, coupled to proton transloca-
tion across the mitochondrial membrane [67]. The MT-
CYB gene encoded cytochrome b forms the active redox
center: a cavity surrounded by the transmembrane helices
A (residues 33–54), D (172–204), and E (221–245), and
the amphipathic surface helix a (65–72) (indicated in
white in Fig. 4). Residues 221 and 194 are also close
enough to contact the active site inhibitor [68]. The posi-
tively selected sites 194 and 235 (indicated in cyan in
Fig. 4) are within these regions, suggesting important
functional effects.
The pocket bound by stigmatellin, one OXPHOS in-

hibitor, is formed by the end of helix C, the helix cd1,
the helix ef linker, and the end of helix F. Specific resi-
dues of known importance include 271, 275, 125–129,
138–153 (indicated in green in Fig. 4). The positively se-
lected sites 126 and 297 are close to this area.
Complex IV is the terminal component of the respira-

tory chain, in which electrons received from cytochrome
c reduce molecular oxygen to water and protons are
pumped into the intermembrane space. Six positively se-
lected sites were identified in complex IV: 178 in subunit
COX1, 54 and 187 in subunit COX2, and 55, 155, and
171 in subunit COX3 (Fig. 5a).
Subunit I (encoded by MT-CO1 gene) is largely em-

bedded in the membrane with three redox centers: heme
a, heme a3, and CuB. One of the CuB liganded residues is
240. It has been suggested that residue 244 and 240 are
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close enough for binding interaction, thereby forming an
unusual cross-link structure [69]. One positively selected
site 178 is very close to 244 and 240 (Fig. 5b). Two pro-
ton translocation pathways, D-pathway and K-pathway,
are identified in subunit I. Three key residues of D-
pathway 91, 98, and 242, and one key residue of K-
pathway 319 are well defined from mutagenesis studies
[69] (key residues are indicated in white in Fig. 5b).
The positively selected site 178 (indicated in cyan in
Fig. 5b) is close to (within 30 Å) the four key residues
and could potentially affect proton translocation.
Subunit II (encoded by MT-CO2 gene) has two trans-

membrane helices and a hydrophilic beta strand extending
to the extra-membrane domain, housing the CuA center.
The first residue crucial for electron to enter the oxidase
complex cytochrome c is 106 (indicated in magenta in
Fig. 5c). The other CuA liganded residues identified
through mutagenesis include 196, 200, 198, 161, 204, and
207 (indicated in magenta in Fig. 5c). One positively se-
lected site 187 is very close to the CuA center and the
other positively selected site 54 is in a linking strand be-
tween two helices of the entry site which includes critical
residue 62 (indicated in cyan in Fig. 5c).

Subunit III (encoded by MT-CO3 gene) is fully embed-
ded in the membrane domain. No key residue of this
subunit has been identified through mutagenesis. How-
ever, it has been shown that this subunit stabilizes the
integrity of the binuclear center in subunit I; for ex-
ample, when this gene is deleted, only a partially assem-
bled complex results [69].
The sites described above as having potential func-

tional significance were more or less uniformly distrib-
uted among branches of the tree and showed no
association with particular swimming performance
groups. Many sites exhibited evidence of being under
positive selection yet did not appear in structural
locations that would suggest special functional import-
ance. However, the interaction between amino acids
among different proteins or among sites in the same pro-
tein is known to have significant functional effects (e.g.,
[70, 71]). Such interactions could affect protein assembly,
stability or specific function. We used 4 Å as the nominal
upper limit for weak interactions between amino acid
sites as described in [72]. None of the sites identified here
as under positive selection were found to be within 4 Å
of any other amino acid sites.

a c

b

d 

Fig. 3 Crystal structure of the entire respiratory complex I at 3.3 Å (PDB: 4HEA) from Thermus thermophiles front view (a). Mitochondrial gene encoded
subunits include Nqo8 (MT-ND1) (orange) (b), Nqo14 (MT-ND2) (yellow), Nqo7 (MT-ND3) (red), Nqo13 (MT-ND4) (blue) (d), Nqo11 (MT-ND4L) (white),
Nqo12 (MT-ND5) (magenta) (c), and Nqo10 (MT-ND6) (green) subunits. Amino acid sites in cyan are those with evidence of positive selection in this
study. Structure in gray indicates the nuclear-gene encoded hydrophilic domain
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Discussion
We examined evidence for adaptation of mitochondrial
OXPHOS genes in fishes with different swimming per-
formance. Selection was investigated for specific amino
acids sites across the whole phylogenetic tree for these
species, as well as for amino acid sites on individual
branches of the tree. The results show a strong signal of
positive selection on branches in the ancestral parts of
the tree, and branches leading to low- and moderate-
performance swimmers. However, no evidence of posi-
tive selection was observed within clades of the high-
performance tunas or billfishes. We did not observe a
disproportionate effect of selection on any particular
gene as all genes exhibited some positively selected sites
but this varied across branches of the tree. We also show
that many of the sites identified as being under positive
selection occur in structural regions where they may
have effects on OXPHOS function. Positively selected
sites in other regions may also have functional signifi-
cance, but their potential effects are less clear.
Our results show the strongest signal of positive selec-

tion on branches leading to the lowest performance
fishes, while purifying selection was identified on the
branches of high performance fishes. This result is in
strong contrast to previous studies that have exclusively
examined the hypothesized association of positive selec-
tion on OXPHOS with increased energetic demands

required by higher organismal performance (reviewed in
[16]). Our results suggest that a fairly efficient OXPHOS
system had evolved under positive selection in the an-
cestors of the two major groups. Selective modification
of OXPHOS on branches leading directly to tunas and
billfishes may have further facilitated the evolution of
high performance swimming. But once very high per-
formance swimming had evolved in these lineages, puri-
fying selection appears to have predominated on the
OXPHOS system as it existed at that time. Conversely,
substantial modification due to positive selection oc-
curred in the lower performance lineages of flatfishes
and the seahorse + pipefish group. The moderate-high
performance jacks and mackerels exhibited moderate-
high conservation, with limited positive selection. Thus,
the strength of the positive selection signal is inversely
proportional to swimming performance within both of
these taxonomic groups.
A common expectation is that positive selection should

lead to enhanced organismal performance. Moreover, it
might be expected that positive selection will lead to in-
creased functional efficiency of OXPHOS in response to
the increased ATP demands associated with enhanced
performance. In the absence of information on the exact
functional significance of individual substitutions, the ef-
fects of positive selection to increase or decrease
OXPHOS efficiency in these taxa remains unknown.

Fig. 4 Crystal structure of the entire respiratory complex III cytochrome b at 3.16 Å (PDB: 1BCC) from chicken (Gallus gallus). White indicates
antimycin-binding cavity formed by helices A (residues 33–54), D (172–204), E (221–245), and the amphipathic surface of helix a (65–72). Green
indicates stigmatellin- and myxothiazol-binding pocket formed by residues 271, 275, 125–129, and 138–153. Cyan residues are those identified
as positively selected amino acid sites in this study
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However, our results do not match simple expectations.
Positive selection appears to be heterogeneous, fluctuating
over phylogenetic time scales, with no simple relationship
between the strength of selection and organismal per-
formance. However, one clear pattern is that there is
strong functional constraint (negative selection) in these
high performance systems and directional selection on
these lower performance groups.
Our results appear to contrast with previous studies

where positive selection or evolutionary rate variation
was found on lineages leading to organisms with high
ATP demands. For example, MT-CO1 [73] and MT-CO2
[74] exhibited accelerated dN in the lineage leading to
hominids that appears to be associated with increased
brain size. Grossman et al. [75] found accelerated rate
variation for MT-CO4, a nuclear gene in OXPHOS

complex IV in catarrhine ancestors of hominids in the
period between 18 and 40 Mya and then decelerated in
the descendant hominid lineages. On the lineage leading
to bats, the only mammals capable of powered flight,
eight OXPHOS genes were found to have undergone
positive selection [18]. Foote et al. [76] found two posi-
tively selected amino acid sites, which could influence
overall metabolic performance, in the mitochondrial
genes of killer whales (Orcinus orca). In addition, the
MT-ND2 and MT-ND5 genes of highly migratory Pacific
salmon exhibit evidence of positive selection [41].
Our results are consistent with previous studies of the

high-performance taxa examined here. Dalziel et al. [39]
examined one mitochondrial OXPHOS gene (MT-CO2)
on several branches among high-performance fishes, in-
cluding billfishes and tunas. They found ω was not

a

c

b

Fig. 5 Structure of mitochondrial DNA encoded MT-CO1 (red) (also see in 5b), MT-CO2 (yellow) (also see in 5c), and MT-CO3 (green) subunits from
bovine heart cytochrome c oxidase at 2.8 Å (PDB: 1OCC) (5a). Amino acid sites in cyan are positively selected sites detected in this study
(5a). White indicates key residues in proton translocation pathways: D-pathway and K-pathway in subunit I. Magenta indicates key residue for
electron to enter and CuA liganded residues in subunit II
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increased in lineages leading to the tunas but was signifi-
cantly increased in the lineage preceding the billfish
(including several amino acid sites). However, the phyl-
ogeny used in [39] does not include the flatfish or sea-
horse clades, which are now recognized as close relatives
of billfishes and tunas, respectively. Little et al. [40] ex-
amined three mitochondrial OXPHOS genes (MT-CO1,
2, and 3) on the single lineage leading to billfishes and
found positive selection along that lineage when flat-
fishes were excluded but no selection was detected when
flatfishes were included. The latter result is consistent
with our findings and as suggested by Little et al. [40]
emphasizes the importance of dense phylogenetic sam-
pling for the analysis of positive selection. We extended
these two studies by examining 10 additional mitochon-
drial OXPHOS genes in the high-performance taxa, and
also by explicitly investigating selection on related low
performance taxa.
With respect to negative selection on high perform-

ance fishes, we speculate that once a reasonably efficient
OXPHOS system evolved it may have become difficult
to change in the high performance groups. The high per-
formance system might be expected to have a much
lower tolerance for non-synonymous substitutions as
most (even slight) changes would be likely to have nega-
tive functional effects. Conversely, lower performance
swimmers may have a much broader tolerance for non-
synonymous substitutions because the OXPHOS system
is under much lower performance demands. We envision
the high performance swimmers as occupying a local
optimum on a fitness landscape [77], but their OXPHOS
system is so fine-tuned that substitutions that would allow
them to cross fitness valleys and reach higher peaks could
be strongly deleterious in the short term. On the other
hand, lower performance fishes might readily cross such
valleys without significant fitness costs because OXPHOS
efficiency will be less critical and they may then climb
other fitness peaks due to positive selection.
It is also possible that organismal fitness in taxa with low

energy demands may be increased by a modified OXPHOS
regulatory system or even a reduction in OXPHOS effi-
ciency. In such cases, we would expect to see evidence of
positive selection on OXPHOS genes in these taxa. Be-
cause there may be trade-offs between OXPHOS rate or
efficiency and deleterious effects, reducing OXPHOS effi-
ciency may be adaptive in systems where ATP demand is
chronically low. For example, maintenance of a strong
chemiosmotic gradient in organisms with low ATP de-
mand may cause increased production of reactive oxygen
species (ROS) [38] leading to oxidative stress [78]. There-
fore reduction of the H+/2e ratio (increased slippage) due
to altered protein structures could be adaptive in low per-
formance species. OXPHOS regulation is highly complex
and involves mechanisms independent of structural

OXPHOS proteins. Elevated expression of OXPHOS genes
and others involved in aerobic respiration could clearly in-
crease aerobic capacity in the absence of selection on spe-
cific OXPHOS variants. However, it is clear that positive
selection acts on OXPHOS proteins and the effects of posi-
tive selection are frequently associated with the evolution
of differences in ATP demand.
There are other issues that could affect the efficiency of

ATP generation of OXPHOS in high-performance tunas
and billfishes. Tunas and billfishes exhibit high metabolic
rates to generate ATP to support their high swimming
performance (thus high OXPHOS efficiency). However,
they are among the few endothermic species of fishes [43,
79, 80] that generate great amount of heat with high meta-
bolic rates (thus reducing ATP generation). Thus, depend-
ing on the extent to which body heat is derived from
OXPHOS uncoupling, there might be trade-offs between
ATP generation and heat generation in these endothermic
high-performance fishes. In addition, it has been shown
that the heat through mitochondrial proton leak differs
among organisms and even differs in cells and tissues in
the same organism [38]. It would be helpful to have em-
pirical data about the P/O ratio (how many ATP mole-
cules made from ADP for each oxygen atom consumed),
the H+/O ratio (how many protons do mitochondria
pump from matrix into inter-membrane space for each
oxygen atom consumed), and the H+/ATP ratio (how
many protons flow back to the matrix for each ADP mol-
ecule phosphorylated to ATP) in these fish species.
High mitochondrial respiration capacity can be achieved

through means other than modification of OXPHOS effi-
ciency via genetic variation, such as increased mitochon-
drial density per tissue mass, more closely packed inner
mitochondrial membrane cristae, increased metabolic en-
zyme activity, increased expression of genes involved in a
number of different but related biological pathways such
as glycolysis, the Krebs cycle, and fatty acid metabolism.
In addition, swimming performance, as in our qualitatively
defined groups, may have arisen due to many different
morphological and physiological characteristics beyond
OXPHOS function. We do not assert that all variation in
swimming performance is due to OXPHOS variation, only
that some unknown fraction of the performance variation
is positively associated with natural selection. A number
of recent studies have presented evidence for direct effects
of OXPHOS variation on organismal fitness, many with
an identified mechanistic basis [81–86]. While these stud-
ies employ tractable model organisms such as Drosophila,
they provide strong evidence that OXPHOS variation af-
fects organismal performance and fitness in the wild.
In conclusion, we found that patterns of natural selec-

tion on mitochondrial OXPHOS genes are complex
among fishes with different swimming performance. The
type and direction of selection are heterogeneous through
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evolutionary time and vary in ways that would not be
readily predicted based solely on organismal performance.
The most striking result was extensive positive selection
on low-performance swimmers. Although examination of
the most recent lineages indicates that positive selection is
inversely proportional to organismal performance, the
broader pattern indicates a complex interplay between or-
ganismal adaptations, ATP demand and OXPHOS func-
tion through evolutionary time.
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