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Abstract
Background: The interactions of fig wasps and their host figs provide a model for investigating co-evolution. Fig
wasps have specialized morphological characters and lifestyles thought to be adaptations to living in the fig's
syconium. Although these aspects of natural history are well documented, the genetic mechanism(s) underlying
these changes remain(s) unknown. Fig wasp olfaction is the key to host-specificity. The Or83b gene class, an
unusual member of olfactory receptor family, plays a critical role in enabling the function of conventional olfactory
receptors. Four Or83b orthologous genes from one pollinator (PFW) (Ceratosolen solmsi) and three non-pollinator
fig wasps (NPFWs) (Apocrypta bakeri, Philotrypesis pilosa and Philotrypesis sp.) associated with one species of fig (Ficus
hispida) can be used to better understand the molecular mechanism underlying the fig wasp's adaptation to its
host. We made a comparison of spatial tissue-specific expression patterns and substitution rates of one
orthologous gene in these fig wasps and sought evidence for selection pressures.

Results: A newly identified Or83b orthologous gene was named Or2. Expressions of Or2 were restricted to the
heads of all wingless male fig wasps, which usually live in the dark cavity of a fig throughout their life cycle.
However, expressions were widely detected in the antennae, legs and abdomens of all female fig wasps that fly
from one fig to another for oviposition, and secondarily pollination. Weak expression was also observed in the
thorax of PFWs. Compared with NPFWs, the Or2 gene in C. solmsi had an elevated rate of substitutions and lower
codon usage. Analyses using Tajima's D, Fu and Li's D* and F* tests indicated a non-neutral pattern of nucleotide
variation in all fig wasps. Unlike in NPFWs, this non-neutral pattern was also observed for synonymous sites of
Or2 within PFWs.

Conclusion: The sex- and species-specific expression patterns of Or2 genes detected beyond the known primary
olfactory tissues indicates the location of cryptic olfactory inputs. The specialized ecological niche of these wasps
explains the unique habits and adaptive evolution of Or2 genes. The Or2 gene in C. solmsi is evolving very rapidly.
Negative deviation from the neutral model of evolution reflects possible selection pressures acting on Or2
sequences of fig wasp, particularly on PFWs who are more host-specific to figs.
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Background
The interactions of flowers and insect pollinators are the
classic examples of co-evolution. The intimate relation-
ships and specialization between figs and fig wasps are
among the best studied cases [1-3]. Pollinating fig wasps
(PFWs) usually exclusively pollinate species of figs [2,4-7],
although recent discoveries indicate that the species-spe-
cific association is much less specific than has been
thought previously [8-13]. The pollinators completely
depend on figs for their life cycles [14-17]. In addition to
PFWs, several non-pollinating species of fig wasps
(NPFWs) also exploit figs [18]. Evidently, non-pollinators
are less specific to a given host species than pollinators
[13,18-23].

The host-specificity behaviour of insects relies heavily on
olfaction [24], which has evolved to a level of extreme
sensitivity and specificity [25]. This highly discriminative
sensory mode is facilitated by an odour-activated seven-
transmembrane-domain G protein-coupled receptor
(GPCR) that signals cascades [26]. Fig wasps are no excep-
tion. The mechanism underlying the host-specificity of fig
wasps is almost certainly based on volatile chemicals
released by the fig [27-29]. Fig wasps should be able to
distinguish the particular odours emitted by hosts from
other volatile compounds [30-32]. Different species of
wasps appear to have unique volatile profiles which could
account for host-specificity [28]. Such chemical con-
straints likely reduce host switching. Currently, investiga-
tions on adaptive changes in fig wasps are limited to
morphological characters associated with an ecological
niche [14,33-36]. For example, a pollinator must enter the
syconium to deposit eggs. Thus, their antennae are easily
broken to ease crawling through the ostiole. Unlike PFWs,
most NPFWs cannot enter syconia. They usually possess a
long ovipositor that is inserted through the syconial wall
for egg laying [37-39]. Furthermore, both eyes and wings
in most adult male PFWs exhibit highly vestigial traits, a
correlate of living in the dark fig cavity all their life
[40,41]. Unlike these attributes, very little is known about
genetic changes in fig wasp's olfactory system.

As members of the GPCR superfamily, olfactory receptors
(ORs) for odorous compounds play the critical role in the
olfactory process [42]. The process consists of several
linked systems ranging from stereo chemical recognition
to the generation of an odour code in the brain. A charac-
teristic trait of conventional odour ligand-binding OR
types is the tremendous diversity of their sequences, often
exhibiting only ~20% identities to each other [43-45]. A
highly conserved, non-conventional member in the insect
OR family is known as Or83b [46]. Orthologs have been
identified from Drosophila melanogaster (DOr83b) [47-49],
Anopheles gambiae (AgOr7) [50], Heliothis virescens
(HvirR2) [51], Apis mellifera (AmelR2) [52] and others

[50,53,54]. Apparently, Or83b does not directly respond
to odorants but rather acts as a chaperone receptor to form
heterodimers with other odorant and pheromone recep-
tors, thus ensuring dendritic localization [55-57].

While spatial expression patterns of conventional ORs are
restricted in small subpopulations of olfactory sensory
neurons (OSNs), Or83b is co-expressed with conventional
ORs in most, if not all, neurons [52,55]. Tissue-specific
expression patterns of putative ORs have been observed in
ecologically distinct species. For example, in the hemat-
ophagous mosquitoes An. gambiae and Aedes aegypti,
Or83b orthologs are expressed in the antennae, legs and
proboscis (i.e., general gustatory organs). As such, Or83b
orthologs may be involved in locating human hosts for
blood feeding [50]. Sex-specific expression patterns occur
in both mosquitoes and moths, for blood ingestion and
mate searching, respectively [58-60]. Insects employ ORs
to recognize and discriminate various quantitative or spe-
cial odours in their ecological niche. Therefore, host spe-
cialization could reflect selection acting on ORs [61,62].
For example, bee-specific rapid expansion of the OR fam-
ily presumably underlies their remarkable olfactory abili-
ties, including perception of several pheromone blends,
kin recognition signals, and diverse floral odours [45]. In
Drosophila sechellia, rapid evolution and lack-of-function
mutations in olfactory and gustatory receptor genes fol-
lowing a host shift reflect positive selection and/or relaxed
constraints associated with an altered ecological niche
[62].

In view of prior studies in mosquitoes and moths, differ-
ent tissue-specific expression patterns of Or83b orthologs
are expected to occur between resident male and host-
searching female fig wasps, or between PFWs that deposit
eggs within the figs, and NPFWs that do not. If the tissue-
specific expression patterns occur together with the crucial
role of Or83b orthologs in locating a host, we can infer
selection pressure on Or83b orthologous genes. The differ-
ent degree of host specificity between pollinator and non-
pollinators [13,18-23] likely makes Or83b orthologous
genes subject to different magnitudes of selection. Our
experimental group consists of one species of PFW (Cera-
tosolen solmsi) and three species of NPFWs (Apocrypta bak-
eri, Philotrypesis pilosa and Philotrypesis sp.), all associated
with Ficus hispida. Herein, we identify Or83b orthologous
genes in these four species of fig wasps, compare spatial
expression patterns and substitution rate of these genes in
fig wasps, examine possible evolutionary forces, and
explore molecular mechanisms involved in co-evolution.

Results
cDNA cloning
The newly identified genes of C.solmsi, A.bakeri, P. pilosa
and P. sp. were named as CsmOr2, AbOr2, PpOr2 and
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PsOr2, respectively, and the sequences were deposited in
GenBank [Accession numbers: EU281848, EU281849,
EU281850, EU281851]. The coding regions of these data
had the same length in all fig wasp species (1422 bp when
the stop codon was not considered). The length was same
as in Nasonia vitripennis, but differed from Microplitis medi-
ator by a one-codon indel (3 bp) and from Ap. mellifera by
two indels. The amino acid (aa) sequences were extraordi-
narily conservative among our fig wasps, with > 90.3%
identity (the percentage of identical matches between the
two sequences over the reported aligned region) and >
96.4% similarity (the percentage of matches between the
two sequences over the reported aligned region where the
scoring matrix value is greater or equal to 0.0). This sug-
gested that the four species of fig wasp are closely related
relative to other species. Sequence identities ranged from
75.3% to 91.4% when compared with other hymenop-
teran orthologs including N. vitripennis, M. mediator and
Ap. mellifera. Alignment of this non-conventional receptor
and the other insects showed that the 19 protein
sequences shared greater than 60% identity and 72% sim-
ilarity. Remarkably, extreme conservation was discovered
in the final 164 aa of the C-terminal, where the 19 protein
sequences shared nearly 90% identity.

We discovered the typical membrane topological structure
of insect ORs in the four fig wasp Or2 protein sequences
for seven putative transmembrane (TM) domains (Figure
1). The N-terminal of these receptors, located intracellu-
larly [56,63], occurred in all protein sequences. The puta-
tive membrane spanning domains were inferred to occur
at similar relative positions in CsmOr2, AbOr2, PpOr2 and
PsOr2. Remarkably, the N-terminal between TM 1 and TM
2, and from TM 3 towards TM 4, contained the most vari-
able regions. The variable second intracellular loop (IC2)
connecting TM 4 and TM 5 was much longer than the
other five loops.

Phylogeny of the Or2 genes
The phylogenetic analyses using 1st and 2nd codon posi-
tions showed that four fig wasp plus N. vitripennis Or2
genes formed a well-supported group (Figure 2; 100%
bootstrap support). A sister group relationship of Or2
genes was detected for P. pilosa and P. sp. (99% bootstrap
support). The sequence of N. vitripennis was more closely
related to Or2 genes of P. pilosa and P. sp. than to A. bakeri,
although this association was weakly supported (60%
bootstrap). The Or2 gene of the pollinator was dissimilar
to those of the three NPFWs. The hymenopterans Ap. mel-
lifera and M. mediator clustered with the fig wasps plus N.
vitripennis (100% bootstrap support). All dipteran and
lepidopteron sequences formed strongly supported
groups (97% and 100%, respectively). Removal of the
sequence of Ceratitis capitata from the analysis did not
affect tree structure. Thus, the sequence was retained in

subsequent analyses. Use of aa sequences instead of 1st
and 2nd codon positions yielded a nearly identical tree
topology except that N. vitripennis first clustered with A.
bakeri (47% bootstrap support) and then formed a group
with P. pilosa and P. sp. (98% bootstrap support) (tree not
show). When we used a Sankoff (step matrix) in PAUP*
[64] to force the minimum number of mutations (steps)
required to transform from one aa to another, we
obtained the same trees found without using the matrix
(tree not show). The difference in tree topologies likely
resulted from a difference in potentially parsimony
informative characters between the aa data (210 sites) and
1st and 2nd nucleotide codon positions (355 sites).

Tissue specificity of expression
Following PCR for tissue specific-expression (Figure 3), all
bands were the size expected from the primer design (330
bp). Bands of similar intensities obtained with primers
specific to the actin control indicated the integrity of the
cDNA preparations. The intensity of the products (relative
to an internal control) indicated variable levels of expres-
sion in different tissues. Strong expressions of this OR-
type occurred in male heads (including antennae and
maxillary palps) and in female antennae, in PFW and all
types of NPFW. Lower levels of expression were discov-
ered in the abdomens and legs of females in all species of
fig wasp. In contrast to female NPFWs, a band of lower
intensity was also obtained with cDNA from the thorax of
female C. solmsi. No transcripts were detected within non-
olfactory tissues (e.g., thorax, abdomen and legs) of all
males. In all cases, actin amplifications were more robust
for tissue templates, reflecting higher template quantities
in the parallel control reactions. This further demon-
strated the absence of detectable expression of ORs in
non-olfactory tissues. Finally, to confirm this pattern, an
additional 10 cycles of PCR were added to the protocols.
Even under these extremely sensitive conditions, RT-PCR
products were not detected in all male non-olfactory tis-
sues and in female NPFW thoraxes. Genomic contamina-
tion of cDNA templates was clearly distinguishable from
cDNA products by primers that spanned predicted introns
(data not shown). To verify their specificity, the RT-PCR
products from each tissue cDNA were sequenced, reveal-
ing that a specific product had indeed been obtained in
each instance.

Selection pressure on individual amino acid sites
Because adaptive evolution usually occurs on a small
region of a gene's sequence and can even be restricted to a
single aa site [65-67], we sought aa sites that were sub-
jected to selection pressure. Selection pressure can be
inferred from the ratio of nonsynonymous to synony-
mous changes, Ka/Ks (also known as dN/dS or ω). When
Ka/Ks = 1, neutral selection is indicated and when Ka/Ks >
1, positive selection is implied. Alternatively, when Ka/Ks
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< 1, purifying selection is suggested [68]. In the present
study, two thresholds for significance (0.1 and 0.2) were
taken into account in order to identify residues potentially
involved in ligand-binding activities. In our analysis, Ka/
Ks = 0.0844161; no positively selected nucleotide sites
were detected at the P < 0.1 in the SLAC analysis. How-
ever, 380 of 474 aa sites were negatively selected. Or2-type
receptors appeared to be primarily negatively selected.
When significance level was adjusted to P < 0.2, one pos-
itively selected site was discovered at the 21st aa (P =
0.157371). Serine (S) occurred at this position in the

PFWs, but all NPFWs had Glycine (G). The other species
of insect displayed various amino acids at this site, includ-
ing Isoleucine (I), Alanine (A), Tyrosine (Y), Leucine (L),
Methionine (M) and G, but not S.

Analyses of substitution rate
Substitution rates were estimated for synonymous and
nonsynonymous sites within the 1365 bp Or2 sequences.
The same data [Accession numbers: FJ606763] were col-
lected from a closely related species of C. solmsi, Ceratoso-
len cornutus, which is the pollinator of Ficus auriculata. This

Alignment of Or83b orthologous amino acids in insectsFigure 1
Alignment of Or83b orthologous amino acids in insects. Conservation of amino acid sequence is displayed as a 
sequence logo. The relative frequency with which an amino acid appears at a given position is reflected by the height of its one-
letter amino acid code, with the total height at a given position proportional to the level of sequence conservation. Transmem-
brane domains (TM 1–7) and extracellular (EC) and intracellular domains (IC) are numbered and indicated. Threonine (T) and 
tyrosine (Y) residues that are sites of potential phosphorylation are enclosed in heavy yellow boxes.
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addition increased the statistical power of the comparison
of substitution rates [69]. Estimations of synonymous
substitutions per synonymous site (Ks) between the dip-
teran species and C. solmsi ranged from 2.1785 to 3.1533
(Table 1). However, the estimates between the dipterans
and C. cornutus were much lower, ranging from 1.3811 to
1.5638 only. In contrast, the rather similar estimates of
substitutions occurred both between the dipterans and P.
pilosa (1.1044–1.4665) and between the dipterans and P.
sp. (1.0173–1.4974). Estimations of the number of non-
synonymous substitutions per nonsynonymous site (Ka)

were slightly higher between the dipterans and C. solmsi
(0.3064–0.3511) than between the dipterans and C. cor-
nutus (0.2995–0.3373). The elevated substitution rate of
the Or2 gene in C. solmsi also occurred when the analyses
involved other hymenopterans (N. vitripennis and Ap. mel-
lifera) instead of dipterans. Between-species comparisons
in pollinators (Ceratosolen) yielded higher values of both
Ks and Ka than in non-pollinators (Philotrypesis) (Table 1).

Tajima's relative rate test [70] detected a significant differ-
ence in the rate of synonymous substitutions between C.

The maximum parsimony tree of Or2 genes from fig waspsFigure 2
The maximum parsimony tree of Or2 genes from fig wasps. The MP phylogram was constructed based on 1st + 2nd 
codon positions. The reliability of each tree node was assessed by bootstrap proportions with 1000 replications. Branch 
lengths are proportional to change.
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Olfactory tissue-specific expression of Or2 genes in fig waspsFigure 3
Olfactory tissue-specific expression of Or2 genes in fig wasps. RT-PCR was performed with cDNAs prepared from dif-
ferent species and tissues of fig wasp. Reaction products were visualized by ethidium bromide staining and UV illumination. 
Bands were the expected size based on the primer design. A no-template negative control ensured the specificity of the ampli-
fication. Actin was amplified from each sample as a control for RNA integrity. CsmOr2, Ceratosolen solmsi Or2; AbOr2, Apocrypta 
bakeri Or2; PpOr2, Philotrypesis pilosa Or2; PsOr2, Philotrypesis sp. Or2; A, antenna; T, thorax; L, leg; Abd, abdomen; H, head; Neg, 
negative control.

Table 1: Synonymous and nonsynonymous divergence of Or2 genes in fig wasps.

C. sm C. c A. bak P. pil P. sp. N. vit A. mel A. aeg C. qui A. gam D. mel

C. sm 0.0435 0.0546 0.0610 0.0608 0.0499 0.1864 0.3302 0.3064 0.3246 0.3511
C. c 0.6524 0.0527 0.0514 0.0548 0.0462 0.1895 0.3285 0.2995 0.3214 0.3373
A. bak 1.3781 1.3191 0.0171 0.0181 0.0115 0.1755 0.3272 0.3025 0.3219 0.3398
P. pil 1.3686 1.1057 0.6505 0.0090 0.0146 0.1797 0.3351 0.3094 0.3240 0.3443
P. sp. 1.5050 1.0802 0.6121 0.0577 0.0156 0.1835 0.3327 0.3043 0.3177 0.3416
N. vit 1.5556 0.9242 0.6681 0.4286 0.3997 0.1847 0.3349 0.3075 0.3248 0.3386
A. mel 2.4788 1.6802 2.2714 1.7787 1.7499 1.9182 0.3173 0.3196 0.3265 0.3206
A. aeg 2.1785 1.5638 1.7451 1.4665 1.4974 1.2952 1.8865 0.0598 0.0802 0.1778
C. qui n.a 1.5110 1.6553 1.1044 1.0173 0.8283 1.7399 0.7988 0.0750 0.1942
A. gam 3.1533 1.3811 1.7594 1.2804 1.2362 1.0298 1.5609 0.9125 0.6374 0.1737
D. mel 2.5885 1.5277 1.4404 1.1202 1.0915 0.9476 1.6724 1.1165 0.7818 0.9111

Estimations of synonymous substitutions (Ks) according to Jukes and Cantor [135] are shown below the diagonal. The estimated nonsynonymous 
divergence (Ka) according to Jukes and Cantor [135] are shown above the diagonal. n.a = not applicable. Estimates in bold correspond to 
synonymous and nonsynonymous divergence between species of Diptera and fig wasp groups. Estimates in bold Italic correspond to synonymous 
and nonsynonymous divergence between C. solmsi and C. cornutus, and between P. pilosa and P. sp. Species names are as follows: C. sm, Ceratosolen 
solmsi;C. c, Ceratosolen cornutus;A. bak, Apocrypta bakeri;P. pil, Philotrypesis pilosa; P. sp., Philotrypesis sp.;N. vit, Nasonia vitripennis;A. mel, Apis mellifera;A. 
aeg, Aedes aegypti;C. qui, Culex quinquefasciatus;A. gam, Anopheles gambiae;D. mel, Drosophila melanogaster.
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solmsi and C. cornutus (Table 2). In contrast, these rates of
substitutions were very similar between P. pilosa and P. sp.
Significantly elevated substitution rates were not found
when C. cornutus was compared with most of the NPFWs
(except P. sp.). However, significantly elevated substitu-
tion rates were obtained when C. solmsi was compared
with all NPFWs. No significant differences in the rate of
nonsynonymous substitutions were detected between any
lineages, although the number of substitutions at the 1st
and 2nd codon positions was higher in C. solmsi than in
C. cornutus and NPFWs.

The extent of the non-random substitutions at synony-
mous codons in different species was measured by three
algorithms (Table 3). Congruent with the rate of synony-
mous substitutions (Ks) being inversely related to codon
usage bias [71,72], C. solmsi showed the lowest codon
bias. The NPFWs exhibited a much higher codon bias. C.
solmsi had the lowest G+C content in their codons.
Because the G+C content at second codon positions was
similar in all species, the lower G+C content at (synony-
mous) third coding positions may have been the main
cause of the lower codon bias of C. solmsi.

Nucleotide diversity and neutrality tests for populations of 
fig wasps
Sequences from the N-terminal of the Or2 gene were col-
lected from 20 individuals of each species in order to test
the null hypotheses of strictly neutral evolution [73,74].
Following alignment, the 729 bp region revealed 18 hap-
lotypes in C. solmsi [Accession numbers: FJ648225–
FJ648242], 13 haplotypes in A. bakeri [Accession num-
bers: FJ648208, FJ648210, FJ648212–FJ648222], 15 hap-
lotypes in P. pilosa [Accession numbers: FJ648244,
FJ648246, FJ648250–FJ648262] and 11 haplotypes in P.
sp. [Accession numbers: FJ648265, FJ648267, FJ648269,
FJ648275–FJ648282]. Increased numbers of segregating

sites were observed in C. solmsi (28 sites) rather than in
NPFWs (21 sites in A. bakeri, 23 sites in P. pilosa and 20
sites in P. sp.). Assuming a randomly mating population
at equilibrium, the average number of pairwise nucleotide
differences between sequences (π) is expected to equal to
average number of nucleotides segregating per site (θ).
However, π was always smaller than θ (Table 4) and, thus,
negative values of Tajima's D (DT) [74], Fu and Li's D*
(D*) and F* (F*) [75] were observed for all populations
of fig wasp.

For all sites of N-terminal, the majority of tests were sig-
nificantly less than zero, suggesting a departure from neu-
trality [74]. There were two notable exceptions to the
departure from neutrality. D* tests in P. pilosa and P. sp.
did not indicate significant departure from neutrality,
although both the values were close to significance. How-
ever, both DT and F* tests for the two species of Philotrype-
sis were significantly less than zero. Similar to tests of
neutrality for all sites, most of tests for nonsynonymous
sites significantly rejected the model of strict neutrality,
suggesting selective forces. Unlike neutrality test for all
sites and nonsynonymous sites, none of the tests of syn-
onymous sites in the NPFWs Or2 data was significant;
these data were consistent with a neutral model of evolu-
tion. However, significantly negative DT, D* and F* tests
were observed for synonymous sites of Or2 data in C. sol-
msi, indicating too many rare nucleotide polymorphisms
with respect to predictions of the neutral theory [76].

Discussion
Identification of Or2 genes
We identified Or83b orthologs for the first time and from
four species of fig wasps associated with F. hispida. As
expected, their primary aa sequences with the Or83b sub-
family were highly conserved relative to other insects
[43,47-54]. They had > 60% identity and > 72% similar-

Table 2: Results from Tajima's relative rate test for synonymous and nonsynonymous divergence of Or2 genes in fig wasps.

Substitutions at the 3rd codon position Substitutions at the 1st and 2nd codon positions

Outgroup SpeciesA-Species B Ma Mb χ2 Na Nb χ2

N. vit P. pil- P. sp. 13 7 1.80 3 4 0.14
A. mel A. bak- P. pil 52 44 0.67 9 8 0.06

A. bak- P. sp. 53 45 0.65 9 10 0.05
D. mel C. c- A. bak 73 72 0.01 19 17 0.01

C. c- P. pil 78 56 3.61 16 17 0.03
C. c- P. sp. 79 56 3.92* 18 16 0.12
C. sm- C. c 58 34 6.26* 20 12 2.00

C. sm- A. bak 85 60 4.31* 22 12 2.94
C. sm- P. pil 94 48 14.90*** 22 15 1.32
C. sm- P. sp. 99 52 14.63*** 24 14 2.63

Ma and Mb are the numbers of substitutions at the 3rd codon positions in the lineages leading to species A and B, respectively. Na and Nb are the 
number of substitutions at the 1st and 2nd codon positions in the lineages leading to species A and B, respectively. Species names are as in Table 1. 
P < 0.05 was used to reject the null hypothesis of equal rates between lineages. * 0.05 > P > 0.01; ** 0.01 > P > 0.001; *** P < 0.001.
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ity, respectively, suggesting that the genes were orthologs
in the different species. The extremely conservative C-ter-
minal, especially at the last 164 aa, are involved in G-pro-
tein binding/activation required for downstream signal
transduction [77]. The high identity and similarity of the
aa sequences suggested that the four species of fig wasps
are closely related species. This high degree of conserva-
tism has not been observed in conventional ORs, even
when compared to all 170 candidate ORs of Ap. mellifera
[45], to 62 candidate ORs of D. melanogaster [44] and to
79 candidate ORs of An. gambiae [43]. This level of con-

servatism reflected a strong selective pressure on the aa
sequence and was consistent with the important role of
non-conventional receptors in the olfactory process [42].
The aa sequences of the four fig wasps included all the
seven transmembrane domains of the G-protein coupled
receptor. The group of threonines and tyrosines were
extremely conserved (aa 465 and 466) in the region of TM
7 (Figure 1). They constituted candidate phosphorylation
sites that may be important for regulating protein func-
tion [78]. An unusually long second intracellular loop was
detected between TM 4 and TM 5. The function of this
structural specialization remained unknown, even though
the second extracellular loop of certain types of mamma-
lian G protein-coupled receptors may be critical for ligand
binding and affinity [79,80]. Recent bioinformatics and
experimental investigations revealed that the membrane
topology of ORs in Drosophila was, in fact, the inverse of
mammalian GPCRs, with the N-terminal of these recep-
tors located intracellularly [56,63]. Thus, we speculate
that the long second intracellular loop of the non-conven-
tional receptor in insects likely plays an important role in
binding conventional ligand-binding ORs.

Adaptation of spatial expression patterns of Or2 genes
We characterized the spatial expression patterns of Or2
genes in four species of fig wasp. RT-PCR experiments
demonstrated that receptors were expressed only in adult
male heads (including antennae and maxillary palps), but
more widely in various tissues from adult females, includ-
ing the antennae, legs and abdomens. The current view is
that Or83b gene does not directly bind odorant ligands
but rather it acts to form heterodimers with conventional
ORs; this ensures appropriate dendritic localization and
function [55-57]. The broad spatial expression patterns in
OSNs further support the essential role of Or83b
orthologs for a sense of smell [52,55]. Given the different
habits of female and male fig wasps, the sex-tissue-specific
expression of Or2-type receptors may indicate a role in
host searching and oviposition in adult females.

Host plants are distributed patchily. Therefore, adult
females must be able to distinguish the particular odours
emitted by their host plant from the myriad of other vol-
atile compounds. Such remarkable sensitivity and specifi-
city is likely achieved by ORs expressed in the legs of adult
female fig wasps. Likewise, Or83b orthologs are also
expressed in legs of An. gambiae and Ae. Aegypti. Mosquito
legs are known only as having a gustatory function
[50,53]. Gustatory receptors (GRs) are the only chemo-
sensory receptors whose expression has been detected in
the legs of D. melanogaster [81,82], the location of gusta-
tory sensilla. It seems likely that in addition to their olfac-
tory function, Or83b orthologs in legs of fig wasps might
function in a contact chemosensory pathway. Because
they function in heterodimerization, perhaps Or83b

Table 3: Estimates of Codon Bias in Or2 genes of fig wasps.

Taxa ENC CBI Scaled χ2 G+C2 G+C3s G+Cc

Fig wasps associated with F. hispida
C. sm 59.795 0.217 0.090 0.378 0.480 0.455
A. bak 55.213 0.306 0.178 0.376 0.588 0.493
P. pil 46.741 0.466 0.382 0.371 0.748 0.544
P. sp. 45.124 0.498 0.413 0.371 0.769 0.549

Other hymenopteran species
N. vit 42.120 0.573 0.511 0.374 0.816 0.565
A. mel 58.591 0.236 0.123 0.367 0.594 0.483

Dipteran species
A. aeg 50.176 0.347 0.309 0.370 0.656 0.511
C. qui 34.475 0.666 0.870 0.387 0.876 0.594
A. gam 42.589 0.508 0.472 0.391 0.768 0.557
D. mel 37.994 0.608 0.647 0.374 0.820 0.558

ENC, Effective Number of Codons. CBI, Codon Bias Index. SChi2, 
Scaled Chi Square. G+C2, G+C content at the second codon 
positions. G+C3s, G+C content at (synonymous) the third codon 
position; i.e. the G+C content in the third codon position excluding 
Trp and Met codons (nuclear universal genetic code). G+Cc, G+C 
content at codon positions. Species names are as in Table 1.

Table 4: Neutrality tests for the Or2 gene of fig wasps using 
Tajima's D, Fu and Li's D* and F* statistics.

Sample π (%) θ (%) DT D* F*

all sites
C. sm 0.396 1.083 -2.473*** -3.700** -3.883**
A. bak 0.349 0.812 -2.257** -2.815* -3.082**
P. pil 0.456 0.889 -1.872* -2.401 -2.611*
P. sp. 0.357 0.773 -2.044* -2.418 -2.683*

Nonsynonymous sites
C. sm 0.451 1.218 -2.405** -3.519** -3.710**
A. bak 0.366 0.928 -2.251** -2.989** -3.221**
P. pil 0.460 1.044 -2.104* -2.530* -2.794*
P. sp. 0.474 0.986 -1.941* -2.134 -2.413

Synonymous sites
C. sm 0.288 0.812 -2.121* -3.081** -3.247**
A. bak 0.316 0.580 -1.739 -1.557 -1.857
P. pil 0.448 0.580 -0.694 -1.213 -1.232
P. sp. 0.123 0.348 -1.723 -2.386 -2.535

π, the average number of nucleotide differences per site between 
sequences; θ, average number of nucleotides segregating per site;DT, 
Tajima's D value; D*, Fu and Li's D* value; F*, Fu and Li's F* value. 
Species names are as in Table 1. * 0.05 > P > 0.02; ** 0.02 > P > 0.001; 
*** P < 0.001.
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orthologs are required in both olfactory and gustatory
process. Chemosensory responses derived from legs
would be extremely close to volatiles of fig fruit. These
receptors in legs may play a critical role in evaluating the
status of a host plant when fig wasps land for oviposition.

Lower levels of expression were detected in the abdomens
of females in four species of fig wasp. Thus, the female's
abdomen likely plays a critical role in locating an oviposi-
tion site. A small number of sensillae occur on the vaginal
plate of the abdomen in D. melanogaster, suggesting a
function in oviposition site selection in fruit flies [83]. In
contrast to Or2 in the fig wasp, expression patterns of
Or83b orthologs have not been discovered in the abdo-
mens of other insects, including D. melanogaster (DOr83b)
[47-49], An. gambiae (AgOR7) [50], H. virescens (HvirR2)
[51], Ap. mellifera (AmelR2) [52] and Ae. aegypti (AaOR7)
[53]. In the fig wasps, this pattern likely reflects an adap-
tive genetic change in response to their host. Both female
PFWs and NPFWs use their ovipositor to touch fig inflo-
rescences and for oviposition [37-39]. Chemosensory
function in the abdomen of fig wasp may occur as
described for the expression of AgOR7 in the proboscis
and labellum of An. gambiae [50]. Abdominal chemore-
ception in all female fig wasps may function in both olfac-
tion and gustation [84].

Support for the adaptation hypothesis is obtained from
the males of all fig wasp species. Wingless male fig wasps
usually live in the fig throughout their life. They do not
need to search for a host. Mating is their primary task.
Male fig wasps have highly specialized mouth parts for
pulling females out of their galls, and, most importantly,
for chewing an exit tunnel for newly transformed female
wasps to leave the syconium [85-87]. In the male's
enclosed environment, the broad expression of ORs may
not be required. Thus, it is not surprising that female
wasps express ORs in a greater number of tissues than do
male wasps. In support of this hypothesis, few sensory
hairs occur on a male's body.

We can not exclude the possibility that several conven-
tional ORs independently express in some OSNs of other
tissues, beside the head of males. Or83b orthologs do not
always co-express with conventional ORs in all OSNs [48-
50]. Indeed, the lack of AgOR7 (mosquito orthologs)
expression in grooved peg sensillum of An. gambiae sug-
gests the presence of an alternative pathway for olfactory
signal transduction that is independent of OR7 function
[50]. Unexpectedly, a weak band was obtained with cDNA
prepared from the thorax of C. solmsi. Most NPFWs ovi-
posit into ovaries of female flowers by inserting their ovi-
positor through the syconium wall (while not entering the
syconium) [37-39]. Unlike NPFWs, female PFWs pene-
trate into the fig cavity through the ostiolar bracts and ovi-

posit in the ovaries of the female flowers. In doing so, a
PFW pollinates female flowers. Different oviposition
behaviour of PFWs and NPFWs may cause different tissue-
specific expression. In the process of entering the syco-
nium's ostiole, the antennae of female PFWs are easily
broken off. Expression of Or2 in the thorax and other tis-
sues may help a pollinator to accurately locate oviposition
sites in the dark inner syconium. PFWs seem to have less
time to search for hosts because adult PFWs live for a
much shorter period of time (from a few hours to 2 days)
than do adult NPFWs (several days to 2 weeks) (personal
observation). Thus, unlike NPFWs, PFWs may require a
broad tissue expression of Or2, in part for increased sensi-
tivity.

Tissue-specific gene expression implies that fig wasps may
have cryptic olfactory inputs in tissues that express ORs. If
the leg and/or abdomen of a fig wasp functions in olfac-
tion, it is likely to be an exaptation [88]. The primary func-
tion of legs and the abdomen are movement and
reproduction, respectively. The role of olfaction in these
organs is a secondary function. The diversity of expression
patterns may be important for determining species-spe-
cific olfactory profiles, such as in the detection of fruit
odours by fruit flies [62] and human host odours by mos-
quitoes [50,53]. The patterns in fig wasps may reflect spe-
cies-specific adaptations to ecology, habitat and
physiology. Further study into the function and character-
istics of Or2 and other conventional ORs will facilitate our
understanding of co-evolution in this model system.

Strong purifying selection for most orthologous amino 
acids
The evaluation of selection pressure used the Ka/Ks ratio,
based on 19 orthologous Or2 genes. A very low average
Ka/Ks ratio indicated that Or2 genes were mainly sub-
jected to purifying pressure. This finding differed drasti-
cally from the properties of the ORs family, most often
characterized by rapid evolution and highly species-spe-
cific gene repertoires [44,45,62]. A higher level of func-
tional constraint on protein-coding exon sequences
should lead to lower level of nonsynonymous variation
which usually generates low average nonsynony-
mous:synonymous substitution ratios. Thus, the low aver-
age Ka/Ks ratio suggests that the Or2-type receptor plays
an important role in the olfactory process of insects and is
subject to a higher level of functional constraint. The 21st
aa of Or2 appeared to be subjected to positive selection,
although the P-value was not very significant. The aa in
PFWs (S) differed from that in all NPFWs (G). Suzuki and
Gojobori (1999) demonstrated that two amino acid sites
of the human leukocyte antigen (HLA) gene undergoing
positive selection might be involved in antigen recogni-
tion [89]. Other studies also showed that positive selec-
tion is focused mainly on the binding site and the distinct
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DNA-binding properties are determined by one or a few
critical amino acids [90-94]. If the 21st aa performed a
binding function, such divergence could have reflected
ligand binding specificity between PFWs and NPFWs. Spe-
cies-specific adaptive divergence might have been driven
by the environment of the host [62]. Ecological niches dif-
fer between PFWs and NPFWs [37-39]. The composition
and concentration of bouquets could vary between the
inside and outside the syconium, although no data docu-
ment this to occur. PFWs that enter the syconium are
likely to smell extra syconian odours. Perhaps the change
of aa at site 21 helped the Or2 of pollinators bind conven-
tional ORs that respond to odours in the syconium.

Elevated rate of substitution in pollinators
All PFWs and most NPFWs are currently classified as being
part of the same chalcid family, Agaonidae [95-97]. How-
ever, recent molecular studies suggest that this family is
paraphyletic and all PFWs form a monophyletic group
[17,98]. An evaluation of closely related species should
help to control for possible differences in mutation rate
[69,99]. Thus, sequence data for Or2 genes were also col-
lected from C. cornutus, a pollinator of F. auriculata and
closely related to C. solmsi, to increase the power of our
analysis of substitution rates.

Between-species comparisons of substitution rates
involved two species of PFWs and three NPFWs. An ele-
vated substitution rate was not detected in Philotrypesis,
but it was in C. solmsi. The rapid evolution of Or2 genes in
C. solmsi became more apparent when the closely related
species in the genus Ceratosolen were compared. Low effec-
tive population sizes may be accompanied by relatively
weak selection compared to drift yet usually drive an
increase in the frequency of slightly deleterious substitu-
tions [62,100-102]. However, no evidence suggests that
PFWs have smaller population sizes than NPFWs. Typi-
cally, pollinators are almost always the dominant wasp
(Herre EA & Machado CA, personal communication),
though NPFWs might affect pollinator numbers by suc-
cessfully invading the fig-pollinator mutualism system
[103]. Thus, the hypothesis of a low effective population
size can not be employed to explain these observations.
Machado [104] found that species of Ceratosolen exhibited
accelerated mutation in their mitochondrial genome rela-
tive to species in other genera. It is possible that this
increased rate has affected the nuclear genome as well
through cytonuclear associations [105-108]. For example,
Rand et al. (2004) demonstrated that the association
between nuclear and mitochondrial substitutions drives
the evolutionary divergence [105]. Mishamar et al. (2006)
showed that mitochondrial DNA and nuclear DNA com-
plex I genes may have co-evolved [109].

Our results are consistent with the proposal that the rate
of synonymous substitutions is inversely related to codon

usage bias [71,72]. Codon usage bias was much lower in
C. solmsi than in the NPFWs. The changed codon bias
indicated that mutations were not strictly neutral
[101,110]. Weak selection on synonymous mutations
caused a codon usage bias in bacteria, yeast and flies [111-
113]. In Drosophila, preferred codons also correspond to
the more abundant tRNAs [114,115]. Because the most
abundant tRNA translates their corresponding codon
more rapidly, the preferred codon speeds up translation
[116,117]. However, there are many counterexamples of
highly expressed genes with little or no codon bias
[118,119]. Therefore, we cannot unequivocally state that
Or2 genes in PFWs that have lower codon usage bias are
expressed at a lower level than in NPFWs. Conversely, the
broader tissue expression of Or2 in PFWs than in NPFWs,
together with the higher degree of host specificity of PFWs
than NPFWS [13,18-23], implies that Or2 genes in PFWs
are expected to be expressed at a higher level than in
NPFWs.

Non-neutral patterns of nucleotide variation
Olfaction genes of insects are widely assumed to experi-
ence selection [43,45,62,120-122]. Our investigation of
Or2 polymorphism in four species of fig wasp sought evi-
dence for selection, and the signature of selection can be
detected by various tests [74,75,123]. These tests also tend
to implicate the corresponding evolutionary forces. The
significantly negative DT and F* values for Or2 data from
populations of C. solmsi, A. bakeri, P. pilosa and P. sp. indi-
cate a higher-than-expected number of low-frequency var-
iations. This is consistent with purifying selection or
directional selection reducing deleterious mutations in
Or2 genes [74]. Once deleterious mutations appear in
population, they will be maintained at a relatively low fre-
quency due to selection pressures. And low-frequency var-
iation will be increased more than in neutral conditions.
For the DNA data, θ will be increased, and the test value
will be significantly negative. With D*, Or2 data from C.
solmsi and A. bakeri reject the neutrality hypothesis, while
those from P. pilosa and P. sp. do not, although the values
are close to significance (0.10 > P > 0.05)[75]. This result
likely reflects either short length of sequence or a small
sample size [124]. Increasing the length of the sequence
and/or sample size could yield a more accurate result.
Because both the DT and F* tests support a non-neutral
model of evolution, most likely the Or2 data in P. pilosa
and P. sp. also reflect selection.

Most tests on nonsynonymous sites of Or2 also show a
significantly negative departure from neutrality, again
suggesting possible purifying selection. Certainly, Or2
plays an important role in fig wasps and variations on
nonsynonymous sites are maintained at a relatively low
proportion. An alternative explanation for negative test
values is the occurrence of directional selection. It elimi-
nates deleterious mutations from the population and pro-
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motes the fixation of advantageous mutations that
optimize function and lead to adaptation to an ecological
niche. The DT test, together with D* and F* tests, clearly
rejects the null hypothesis that the synonymoussites of
Or2 gene in C. solmsi are evolving under a strictly neutral
model of molecular evolution [74]. Selection pressures
seem to also act against slightly deleterious mutations at
synonymous sites within C. solmsi. Regarding synony-
mous sites in NPFWs, none of tests significantly rejected
the null hypothesis. Thus, these data are consistent with a
neutral model of evolution [74,75].

The use of several tests appears to be a more powerful
means of inferring patterns of selection affecting nucle-
otide variance. Combined with test results on nonsynon-
ymous sites, Or2 in C. solmsi appears to experience more
effective selection relative to that of NPFWs. This might be
related to the greater host specificity of PFWs relative to
NPFWs, and/or it may also be related to the larger effective
population size of PFWs. It remains to be determined
whether this trend occurs just for Or2 or throughout the
entire genome of C. solmsi. Data from additional loci are
required to evaluate this possibility.

Conclusion
Or83b orthologous genes obtained from one pollinator
and three non-pollinator species of fig wasps associated
with F. hispida were evaluated. We examined spatial
expression patterns, evolutionary rate and selective forces
acting on these genes in fig wasps.

Or2 genes were expressed beyond the known primary
olfactory tissues and potentially this has functional impli-
cations [52]. Or2 plays an essential role in the localization
and function of co-expressed OR proteins [55,57]. Thus,
the expressions of Or2 genes in non-olfactory tissues of
female fig wasps strongly indicated the presence of cryptic
olfactory inputs in these tissues. Olfactory responses
obtained from non-olfactory tissues may have indicated a
long-term adaptation to figs. Future investigations can
determine whether these genes have a chemosensory
function expressed in non-olfactory tissues, or not.

Our results, taken together with those from previous stud-
ies [17], suggested that an accelerated rate of substitution
was likely characteristic of the Or2 gene in C.solmsi, unlike
that in NPFWs associated with F. hispida. Neutrality tests
indicated that Or2 genes in most fig wasp populations
were not concordant with the hypothesis of neutral selec-
tion. Considering the importance of Or2, selection against
deleterious mutations could have maintained variations
at a relatively low proportion. Unlike NPFWs, selection
pressures were also detected in synonymous sites within
C.solmsi, suggesting a more effective role on a pollinator
species that is more specific to fig host.

Methods
Taxa sampling
Four species of fig wasp (C. solmsi, A. bakeri, P. pilosa and
P. sp.) were randomly collected from fruits of F. hispida in
Danzhou, Hainan province, China. The species, C. cornu-
tus from F. auriculata, was collected for comparative anal-
yses. Mature figs, from which the fig wasps emerge, were
collected by Haoyuan Hu and Liming Niu, and dissected
in the lab. All emerged fig wasps were immediately pre-
served in Sample Protector (TaKaRa). The four species
were identified and then maintained at -80°C.

Cloning the Or83b orthologous gene
Total RNA was isolated by using TRIzol procedures
according to the manufacturer's instructions (Transgen
Biotech). Each experiment used about 3 μg RNA for first-
strand cDNA synthesis with EasyScript Reverse Tran-
scriptase (Transgen Biotech) and Oligo(dT)18 primers
(Invitrogen) to generate templates for individual PCR
reactions. Seven degenerate primers were designed
according to amino acid sequences retrieved from Gen-
Bank: Nasonia vitripennis isoform 1 [GenBank:
XM_001607869], Apis mellifera R2 [GenBank:
XM_001121145], Drosophila melanogaster Or83b [Gen-
Bank: NM079511], Anopheles gambiae Or7 [GenBank:
AY363725], Culex quinquefasciatus Or7 [GenBank:
DQ231246], Bombyx mori R2 [GenBank: AJ555487].

A short length of conserved C-terminal coding region
(735 bp) was initially amplified using three degenerate
primers: FW5'1: 5'-GYTNATHTTYGCNTGYGARC-3';
FW5'2: 5'-AAGGGCATCATGAAGCCCYTNATGGARYT-3';
FW3'1: 5'-TTACTTCAGCTGCACCARNACCATRAA-3'.
FW5'2 and FW3'1 were designed using CODEHOP http:/
/blocks.fhcrc.org/blocks/codehop.html.

Based on the initial results, four additional degenerate
primers were designed and used to obtain the remaining
N-terminal coding region sequences: FW5'3: 5'-ATGAT-
GAARWYNAAGCAWCARGG-3'; FW3'3: 5'-TTGCTRTA-
DATNCCWCGNASRTC-3'; FW5'4:
5'ATGAARWYNAAGCAWCARGGNYTRRTNGCSGA-3';
FW3'4: 5'TGRTCNGCRCTKCCRGCCTTGAA-3'. A reac-
tion volume of 50 μl contained 2 mM MgCl2, 0.2 mM of
each dNTP, 0.2 μM of each primer, and 2.5 U of EasyTaq
DNA polymerase (TransGen Biotech). PCR program
involved 5 min at 94°C, then 35 cycles with 94°C for 30
s, 52°C for 40 s and 72°C for 1 min, followed by incuba-
tion for 10 min at 72°C. The amplified DNA products
were purified and automated DNA sequencing was per-
formed on an ABI3730 with an ABI PRISM BigDye termi-
nator cycle sequencing ready reaction kit (Perkin-Elmer
Biosystems). The same N-terminal data were obtained
from 20 individuals per species of PFWs and NPFWs asso-
ciated with F. hispida. These taxa were randomly collected
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from different trees and different crops. Thus, we were
able to assess levels of intraspecific variation and test the
neutrality model. Sequences from N-terminal and C-ter-
minal were assembled as contiguous fragments using
ContigExpress of Vector NTI Advance 9 (Invitrogen). The
four full-length sequences of Or83b orthologous genes
were obtained from four species of wasps associated with
F. hispida. We also obtained a full-length sequence from C.
cornutus. Thus, we were able to compare substitution rates
in closely related species. The TMHMM v2.0 http://
www.cbs.dtu.dk/services/TMHMM/ program [125,126]
was used to predict the transmembrane domain (TM; Fig-
ure 1).

Sequence alignment
Primary amino acid sequences of four species of fig wasp
associated with F. hispida and 15 additional insect species
were obtained from GenBank (accession numbers indi-
cated in brackets): Microplitis mediator Or1 [EF141511],
Nasonia vitripennis isoform 1 [XM_001607869], Apis mellif-
era R2 [XM_001121145], Drosophila melanogaster Or83b
[NM079511], Ceratitis capitata R2 AY843206], Anopheles
gambiae Or7 [AY363725], Culex quinquefasciatus Or7
[DQ231246], Aedes aegypti Or7 [AY582943], Bombyx mori
Or2 [AJ555487], Antheraea pernyi Or2 [AJ555486], Heli-
coverpa zea R2 [AY843204], Mamestra brassicae R2
[AY485222], Spodoptera exigua R2 [AY862142], S. litura R2
[DQ845292] and Tribolium castaneum R2 [XM_968103].
Sequences were aligned by using CLUSTAL W [127] with
default multiple alignment parameters. The alignment
was optimized manually, and gap positions present in >
70% of the sequences were deleted. Sequence logos (Fig-
ure 1) were generated using Weblogo http://weblogo.ber
keley.edu/logo.cgi[128,129]. Both the identity and simi-
larity values from all the possible comparisons were
obtained using the EMBOSS Pairwise Alignment Algo-
rithm http://www.ebi.ac.uk/emboss/align/.

Phylogenetic analyses
Sequences having heterogeneous patterns of nucleotide or
amino acid substitution may form erroneous branching
patterns [130]. Therefore, we employed the Disparity
Index Test [131] as implemented in MEGA 4.0 [132] to
test 1st + 2nd codon positions, 3rd codon positions and
the amino acid sequences for composition homogeneity
among lineages. A Monte Carlo test (1000 replicates) was
used to estimate the P-values [131]. A significantly heter-
ogeneous pattern was detected at 3rd codon positions in
most comparisons (P < 0.05). In contrast to 3rd codon
position, the 1st + 2nd nucleotide positions and the
amino acid sequences were found to be more homogene-
ous, except for 1st + 2nd codon position of C. capitata
(data not show). Therefore, we used the 1st + 2nd codon
positions and the amino acid sequences in the phyloge-
netic analysis. All positions containing gaps and missing

data were eliminated from the dataset (complete deletion
option). The final dataset here contained 864 aligned
nucleotide positions and 430 aligned amino acid posi-
tions. The best tree was selected using the maximum par-
simony (MP) criterion. Nodal stability was assessed using
bootstrap proportions (1000 replicates) and the values
are shown next to the branches. The MP trees were
obtained using the Close-Neighbour-Interchange algo-
rithm with search level 3, in which the initial trees were
obtained with the random addition of sequences (10 rep-
licates). Phylogenetic analyses were conducted in MEGA
4.0 [132] and PAUP* 4.0b10 [64].

RNA expression
Antennae, thoraxes, abdomens, legs and heads (male) of
four species of fig wasp associated with F. hispida were dis-
sected in Sample Protector (TaKaRa), and total RNA of
each tissue was isolated by using TRIzol procedures
according to the manufacturer's instructions (Transgen
Biotech). A series of non-quantitative RT-PCR experi-
ments were performed by using cDNA preparations from
various tissues of all male or female fig wasps and the
same primer pairs were used for each type of tissue. In
order to control for genomic DNA contamination, prim-
ers spanning predicted introns were designed for subse-
quence NEST-PCR reactions: FW5'5: 5'-
AGTGCBATCAARTAYTGGGTNGA-3'; FW5'6: 5'-CTNGC-
NTACCARGCNAC NAA-3'; FW3'5: 5'-TTACTTCAGCT-
GCACCARN ACCATRAA-3'. All RT-PCR reactions were
replicated at least three times. We also amplified the actin
gene [133] from each tissue as a control for cDNA integ-
rity by use of the following primers: β-actin F: 5'-ATGT-
GCAAGGCHGGHTTCGC-3'; β-actin R: 5'-
CRTGGATRCCGCA VGAYTCC-3'. PCR products were
purified and directly sequenced as described above.

Selective pressure on individual codons
Selective pressure (positive selection and purifying selec-
tion) on individual codons (sites) within the coding
region of the 19 amino acid sequences of Or83b orthologs
were inferred using the Single Likelihood Ancestor Count-
ing (SLAC) package http://www.datamonkey.org[89].
This codon-based maximum likelihood method did not
assume equal synonymous substitution rates throughout
the sequence and it chose the most appropriate model for
nucleotide substitution.

Substitution rate
Evolutionary divergence at the gene-coding region was
estimated by the number of synonymous substitutions
per synonymous site (Ks) and the number of nonsynony-
mous substitutions per nonsynonymous site (Ka) [68].
Analyses were conducted using the modified Nei-Gojo-
bori (Jukes-Cantor) method (assumed transition/trans-
version bias = 1.021) in MEGA4 [132,134,135]. The
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results were based on the sequences alignment of seven
hymenopteran species (C. solmsi, C. cornutus, A. bakeri, P.
pilosa, P. sp., N. vitripennisl and Ap. mellifera) and four dip-
teran species (Ae. aegypti, C. quinquefasciatus, An. gambiae
and D. melanogaster). All positions containing alignment
gaps and missing data were eliminated only in pairwise
sequence comparisons (pairwise deletion option).

Equality of evolutionary rate between two lineages of fig
wasps was tested using an outgroup in Tajima's relative
rate test in MEGA4 [70,132].P < 0.05 was used to reject the
null hypothesis of equal rates between lineages.

Effective Number of Codons (ENC) [136], Codon Bias
Index (CBI) [137] and Scaled Chi-square (SChi2) [113]
methods were implemented in DnaSP program version
4.50.3 [138]. These methods estimated the codon bias
present at the gene-coding region. The value of ENC
ranges from 20 (only one codon is used for each amino
acid; i.e., the codon bias is maximum) to 61 (all synony-
mous codons for each amino acid are equally used; i.e., no
codon bias). CBI values range from 0 (uniform use of syn-
onymous codons) to 1 (maximum codon bias). SChi2
measured the difference between the observed number of
codons and those expected from equal usage of codons. A
higher SChi2 value indicated a stronger deviation from
the random use of synonymous codons.

Neutrality test
The signature of selection can be detected by various tests
[74,75,123], but it is not clear which is most powerful.
Thus, we exploited Tajima's D statistic [74], and Fu and
Li's D* and F* tests [75] to estimate deviations from neu-
tral expectations. These tests were implemented in DnaSP
version 4.50.3 [138]. A negative Tajima's D signified an
excess of low frequency polymorphisms, indicating popu-
lation size expansion, purifying selection, recent direc-
tional selection and/or background selection of
deleterious mutation. A positive Tajima's D signified low
levels of both low and high frequency polymorphisms,
indicating a decrease in population size and/or balancing
selection [74]. The same thing held for Fu and Li's tests.
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