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Abstract

Background: Hydrogenosomes are organelles that produce molecular hydrogen and ATP. The broad phylogenetic
distribution of their hosts suggests that the hydrogenosomes of these organisms evolved several times independently
from the mitochondria of aerobic progenitors. Morphology and 18S rRNA phylogeny suggest that the microaerophilic
amoeboflagellate Psalteriomonas lanterna, which possesses hydrogenosomes and elusive "modified mitochondria", belongs
to the Heterolobosea, a taxon that consists predominantly of aerobic, mitochondriate organisms. This taxon is rather
unrelated to taxa with hitherto studied hydrogenosomes.

Results: Electron microscopy of P. lanterna flagellates reveals a large globule in the centre of the cell that is build up from
stacks of some 20 individual hydrogenosomes. The individual hydrogenosomes are surrounded by a double membrane
that encloses a homogeneous, dark staining matrix lacking cristae. The "modified mitochondria" are found in the
cytoplasm of the cell and are surrounded by |-2 cisterns of rough endoplasmatic reticulum, just as the mitochondria of
certain related aerobic Heterolobosea. The ultrastructure of the "modified mitochondria" and hydrogenosomes is very
similar, and they have the same size distribution as the hydrogenosomes that form the central stack.

The phylogenetic analysis of selected EST sequences (Hsp60, Propionyl-CoA carboxylase) supports the phylogenetic
position of P. lanterna close to aerobic Heterolobosea (Naegleria gruberi). Moreover, this analysis also confirms the
identity of several mitochondrial or hydrogenosomal key-genes encoding proteins such as a Hsp60, a pyruvate:ferredoxin
oxidoreductase, a putative ADP/ATP carrier, a mitochondrial complex | subunit (51 KDa), and a [FeFe] hydrogenase.

Conclusion: Comparison of the ultrastructure of the "modified mitochondria" and hydrogenosomes strongly suggests
that both organelles are just two morphs of the same organelle. The EST studies suggest that the hydrogenosomes of P.
lanterna are physiologically similar to the hydrogenosomes of Trichomonas vaginalis and Trimastix pyriformis. Phylogenetic
analysis of the ESTs confirms the relationship of P. lanterna with its aerobic relative, the heterolobosean amoeboflagellate
Naegleria gruberi, corroborating the evolution of hydrogenosomes from a common, mitochondriate ancestor.
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Background

Aerobic eukaryotes possess classical mitochondria, but
anaerobic eukaryotes can host very diverse organelles that
belong to a broad spectrum of double-membrane
bounded, mitochondria-related compartments. These
organelles range from full-fledged, but anaerobic mito-
chondria to tiny "mitosomes" with a minimal protein
content. Examples of these anaerobic functioning
organelles are the "mitochondria-like" organelles of Blas-
tocystis [1], the "mitochondrial remnant" of Cryptosporid-
ium [2], the "hydrogenosomes" of Trichomonas |3] and the
"mitosomes" of Giardia, Entamoeba, and Trachipleistophora
[4-6]. Anaerobic mitochondria, mitochondria-like
organelles and hydrogenosomes produce ATP, albeit with
either different electron transport chains than in aerobic
mitochondria, or without an electron transport chain
altogether. Mitosomes do not produce ATP - they seem to
host only enzymes engaged in Fe-S cluster biogenesis [7].
The presence of these proteins appears to be the only
property that is shared between all members of the mito-
chondrial family, perhaps with the exception of the mito-
somes of Entamoeba histolytica and Mastigamoeba balamuthi
where the corresponding proteins are likely to be local-
ized in the cytoplasm [8-10]. Hydrogenosomes produce
molecular hydrogen with the aid of one or several hydro-
genases. They are double-membrane bounded organelles
sized approximately 0.5 - 2 pm. They are found in a broad
spectrum of unicellular, anaerobic (or microaerophilic)
protists such as parabasalid flagellates (Trichomonas vagi-
nalis, Tritrichomonas foetus, Histomonas meleagridis), exca-
vate, preaxostylid flagellates (Trimastix pyriformis),
heterolobosean amoeboflagellates (Psalteriomonas lan-
terna), anaerobic ciliates (e.g. Nyctotherus ovalis, Metopus
palaeformis, Trimyema compressum, Caenomorpha uniserialis,
Dasytricha ruminantium), and anaerobic chytridiomycete
fungi (Neocallimastix sp., Piromyces sp.). The broad phylo-
genetic distribution of their hosts suggests that the
hydrogenosomes of these organisms evolved several times
independently. Accordingly, hydrogenosomes are not the
same, they differ structurally and metabolically [11-14].
However, it is likely that all these various hydrogeno-
somes produce ATP by substrate-level phosphorylation.
Besides ATP and hydrogen, most of them produce CO,
and acetate as end products of their carbohydrate metab-
olism. Nyctotherus ovalis produces succinate in addition,
and the ciliate Trimyema compressum as well as the anaero-
bic chytrids Neocallimastix sp. and Piromyces sp. produce
formate as one of their metabolic end products
[11,12,15,16]. The major substrate of the carbohydrate
catabolism of hydrogenosomes is pyruvate that is metab-
olized by either pyruvate:ferredoxin oxidoreductase
(PFO) as in Trichomonas or pyruvate:formate lyase (PFL)
as in Neocallimastix and Piromyces [15,17]. Notably, Nyc-
totherus ovalis uses pyruvate dehydrogenase (PDH) as aer-
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obic mitochondria do [16]. For their major redox-
reactions, hydrogenosomes use ferredoxins or compo-
nents of a mitochondrial or bacterial complex I. [18,19].

Evidence from morphology and 18S rRNA phylogeny sug-
gests that the microaerophilic amoeboflagellate Psalteri-
omonas lanterna belongs to the Heterolobosea, a taxon
that consists predominantly of aerobic, mitochondriate
organisms [20-23]. Only three related anaerobic organ-
isms, the amoebae Vahlkampfia anaerobica, Monopylocystis
visvesvarai and Sawyeria marylandensis have been
described. While the lack of molecular data does not allow
a closer determination of the phylogenetic position of
Vahlkampfia anaerobica, 18S tRNA data clearly reveal that
the latter two amoebae are close relatives of Psalteriomonas
lanterna [22-24]. The flagellate stage of Psalteriomonas lan-
terna hosts a large globular hydrogenosomal complex that
is associated with numerous endosymbiotic methanogens
[20]. Remarkably, it also hosts 0.6 - 3.0 pm sized cytoplas-
mic organelles that were interpreted as "modified mito-
chondria" [20,25]. If this interpretation is true, it would
make Psalteriomonas unique in having both mitochondria
and hydrogenosomes which are normally mutually exclu-
sive. The large, globular organelles were identified as
hydrogenosomes using a cytochemical reaction (BSTP
staining, c.f. [26]) to detect hydrogenase activity and the
organelle's reaction with a heterologous antibody against
hydrogenase [25]. The "modified mitochondria" reacted
only weakly with the antibody and were not analyzed in
more detail. Physiological studies were not performed
since P. lanterna cannot be cultured axenically. Molecular
information is restricted to the DNA sequence of a ferre-
doxin and the 18S rRNA gene; the latter allowed the deter-
mination of the phylogenetic position of P. lanterna as
belonging to the Percolozoa (Heterolobosea) with a sis-
tergroup relationship to the Vahlkamphidae [21-23,27].

Here we present a combined electron microscopic and
molecular study that aims to unravel the structure and
function of the hydrogenosomes and the presumed
"modified mitochondria" of Psalteriomonas lanterna. We
describe the ultrastructure of the "modified mitochon-
dria" and hydrogenosomes in detail and provide evidence
that both organelles are actually two morphs of the same
organelle and not two different organelles. Moreover, we
provide molecular information from preliminary EST
studies on the phylogenetic position with respect to the
aerobic relatives and the potential function of the hydrog-
enosomes. These studies suggest that the hydrogeno-
somes of P. lanterna are physiologically similar to the
hydrogenosomes of Trichomonas vaginalis and Trimastix
pyriformis [17,28]. Phylogenetic analysis of the ESTs con-
firms the relationship of P. lanterna with its aerobic rela-
tive, the heterolobosean amoeboflagellate Naegleria
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gruberi. This organism is a free-living soil and freshwater
amoeboflagellate and closely related to the pathogenic
Naegleria fowleri that can cause severe amoebic meningitis.

Results and discussion

Electron microscopy

Light microscopy of Psalteriomonas lanterna flagellates
reveals a large globule in the centre of the cell (Fig. 1a).
This globule had been identified as a hydrogenosome by
its reaction with an antiserum against hydrogenase and
activity staining for hydrogenase with the aid of the BSTP
reaction [25]. Also in the amoeba stage this globule is
present but less prominently shaped (Fig. 1b). DAPI - and
ethidium bromide staining of the globule for nucleic acids
were negative (not shown).

When the hydrogenosomes of Psalteriomonas lanterna
were described for the first time at the electron micros-
copy level, they were seen to form globules consisting of
closely packed "microbodies" intermingled with symbi-
otic methanogenic archaea [20]. In some cases the
hydrogenosomes (microbodies) were penetrated by
methanogens [25]. Notably, the analysis of symbiont-free
cells revealed that the hydrogenosomes also assembled
into globules in the absence of methanogenic archaea.
After more than 20 years of cultivation, all Psalteriomonas
lanterna cells became free of methanogens as judged by
the absence of methane production and the specific F,,,
autofluorescence [29] (data not shown). Electron micro-
scopical analysis confirms the absence of methanogens
and reveals that the central globule is a large complex
built up from stacks of more than 20 individual hydrog-
enosomes, which are predominantly sausage- and dumb-
bell-shaped (Fig. 2¢, d). Individual hydrogenosomes are
surrounded by a double membrane that encloses a homo-
geneous, dark staining matrix (Fig. 2d). In a few cells, up

Figure |

Light microscopy of Psalteriomonas lanterna. A: Flagel-
late stage of Psalteriomonas lanterna DIC-microscopy. At the
apical side of the cell two of the four flagella clusters can be
seen. The globule in the centre of the cell is the hydrogeno-
somal complex. B: Amoeba stage of Psalteriomonas lanterna.
CLS-microscope. Bars: 30 um
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Figure 2

Electron microscopy of the hydrogenosomes of Psal-
teriomonas lanterna flagellates. A: Cell with two small
stacks of hydrogenosomes. HC: hydrogenosomal complex. B:
Group of dumb-bell-shaped hydrogenosomes in the periph-
ery of the cell. The hydrogenosomes are surrounded by cis-
terns of rough endoplasmatic reticulum (rough ER). These
organelles have been named "modified mitochondria" by Bro-
ers (1992) [25]. C: Large stack of hydrogenosomes (HC). D:
Detail of the hydrogenosomal complex shown in C. E: "Sin-
gle" hydrogenosome surrounded by rough ER. F: Dumb-bell-
shaped hydrogenosome ("modified mitochondrion"). Bars A-
D, F: | um; E: 0,5 um

to four smaller hydrogenosomal complexes were found;
the stacks consist of 5-6 individual hydrogenosomes (Fig.
2a). These stacks are regarded as juvenile complexes.

Broers [20] described "modified mitochondria" in the
periphery of the Psalteriomonas lanterna cells, odd
organelles that were surrounded by a cistern of rough
endoplasmatic reticulum (rough ER). In our study, these
"modified mitochondria" look very similar to the individ-
ual hydrogenosomes of the hydrogenosomal complex of
the globule (Fig. 2b, e, f). The matrix is homogeneous, but
less densely stained as in the stacked hydrogenosomes;
there is no evidence for the presence of (mitochondrial)
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cristae. All these organelles are surrounded by 1-2 cisterns
of rough ER - like the mitochondria of aerobic Heterolo-
bosea, e.g. Tetramitus rostratus, Paratetramitus jugosus, Vahl-
kampfia aberdonica, Vahlkampfia avara and Vahlkampfia
ustiana [30,31]. Similarly to the hydrogenosomes in the
stack, they are bounded by a double membrane. Most
organelles are dumb-bell-shaped (Fig. 2b, f), some are
sausage-shaped (Fig. 2e), and a few are cup-shaped and
similar in appearance to the mitochondria of certain aer-
obic Heterolobosea, e.g. Vahlkampfia ustiana [31]. Certain
dumb-bell- and cup-shaped organelles are rather slim in
the middle, suggesting that these organelles might be fis-
sion stages similar to the fission stages of Trichomonas vag-
inalis hydrogenosomes [32]. A biometric analysis of the
electron microscopic pictures of the stacked hydrogeno-
somes and the cytoplasmatic organelles revealed no dif-
ferences in the length-distribution (Fig. 3). The diameter
of the hydrogenosomes and the modified mitochondria
show a modal distribution around 0.3 um (range 0.1-0.9,
N =111; data not shown). Given the identical distribution
of lengths and diameters and the very similar morphol-
ogy, we conclude that the cytoplasmatic organelles are
hydrogenosomes, potentially in young, dividing stages.
Absence of staining of the cytoplasmatic organelles in the
BSTP reaction at the light microscopic level can be
explained either by a lack of hydrogenase activity in the
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Figure 3

Histogram of the lengths of hydrogenosomes. Ran-
domly selected sections of hydrogenosomes on the electron
micrographs were measured and plotted. "dividing": dumb-
bell-shaped organelles. "complexes": hydrogenosomes from
stacks. All kinds of hydrogenosomes belong to the same
length distribution.
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"young" organelles or by an insufficient sensitivity of the
BSTP reaction. On the other hand, pictures published by
Broers [25] suggest a faint reaction with the hydrogenase
antibody. Moreover, both types of organelles stain with
Rhodamine-123 as normal mitochondria and hydrogeno-
somes [16,25]. Therefore, it is likely that both the stacked
hydrogenosomes and the cytoplasmatic organelles
("modified mitochondria") are morphs (or developmen-
tal stages) of the same organelle. It is highly unlikely that
hydrogenosomes and mitochondria occur in the same
cell, because hydrogenosomes have been identified as a
special kind of hydrogen-producing mitochondria
[14,16,18]. On the other hand, different morphs of mito-
chondria have been described in the ciliate Euplotes minuta
[33,34]. The most spectacular example of the presence of
different mitochondria in the same organism is the
"nebenkern" formation during spermatogenesis in Dro-
sophila where mitochondria aggregate and fuse to form a
globule of the same size as the nucleus [35].

ESTs

About 480 randomly chosen clones were sequenced and
analyzed using the BLAST X tool [36]. The clones were sin-
gle reads of varying length. The genes discussed here
(except 51 kDa) were extended by RT-PCR.

Although the cDNA library was created using poly-d(T)
primers, several sequences of bacterial origin were identi-
fied that matched with species present in the non-axenic
culture. However, bona-fide Psalteriomonas sequences
were easily identified by their high A+T content (67-72%).
In addition, a codon usage analysis was performed using
the Cusp program from the EMBOSS package [37] and a
principal component analysis. These analyses confirmed
the homogeneity of the putative Psalteriomonas sequences.

The protein sequences were selected for phylogenetic
analysis either because of their usefulness for establishing
the phylogenetic position of Psalteriomonas lanterna: Elon-
gation Factor 1 alpha, Hsp60, or for their potential role in
the hydrogenosomal metabolism: putative ADP/ATP car-
rier, [FeFe] hydrogenase, pyruvate:ferredoxin oxidore-
ductase (PFO), propionyl-CoA carboxylase (PCCB),
Complex I - 51 kDa subunit and glutamate dehydroge-
nase (GDH).

Elongation Factor | alpha (EF-I alpha)

During the translation of a mRNA chain in the ribosome,
two GTPases play an important role in the elongation
cycle: the Elongation factor 2 (EF-2 or EF-G in Prokaryo-
tes) and the Elongation Factor 1 alpha. The EF-1 alpha
(EF-Tu in Prokaryotes) is responsible for carrying and pro-
moting the binding of aminoacyl-tRNAs to the A-site of
the ribosomal small subunit [38].
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Since Elongation Factor 1 alpha is present in the three
domains of life, i.e., Bacteria, Archaea and Eukaryota, it
should be a good phylogenetic marker that might be use-
ful for inferring the phylogenetic position of Psalteri-
omonas within the eukaryotic tree of life. However, the
species distribution within the tree calculated here is not

Elongation Factor
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in complete agreement with the eukaryotic tree of life
since several species exhibit conspicuous artefactual rela-
tionships, particularly the polyphyly of the ciliates and
Amoebozoa (Fig 4). Notwithstanding, Psalteriomonas lan-
terna clusters with Trichomonas vaginalis as seen in several
of our phylogenies.
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rooted by an outgroup of Archaeal species (in blue). Branch values represent the bootstrap percentage.
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Heat shock protein 60 (Hsp60/cpn 60)

Hsp60 (GroEL/cpn60) is an ATP-dependent, highly con-
served protein, involved in protein folding, maturation,
renaturation and assembly of complexes, as well as in
intracellular cross-membrane shuttling of precursor-pro-
tein molecules [39]. In nearly all eukaryotes it is located in
the mitochondria, hydrogenosomes or mitosomes.

Its structure resembles a cylindrical barrel, which binds
and encloses the folding of proteins in its core [40]. It is
an essential and highly conserved protein present in virtu-
ally all organisms, shows no evidence of horizontal gene

hsp60
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transfer, and is frequently used as a mitochondrial marker
[41].

The Hsp60 phylogeny shows the expected eukaryotic
branching, and a solid bootstrap supported outgroup of
prokaryotic sequences (Fig. 5). Psalteriomonas lanterna and
Naegleria gruberi branch together corroborating a close
relationship between the mitochondrion of Naegleria gru-
beri and the hydrogenosomes of Psalteriomonas lanterna.
This clustering with N. gruberi is consistent with the previ-
ously published 18S rRNA phylogeny which groups both
organisms [21-23]. Furthermore, the clustering of the Het-
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Phylogeny of the Heat Shock Protein 60. The branch values represent bootstrap values. ML tree computed with
RtREV+4 discrete-rate G+I+F. An outgroup of Bacteria was chosen to root this tree (in blue).
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erolobosea with the Euglenozoa seen in this tree is con-
sistent with previously published eukaryotic phylogenies
[42].

Mitochondrial Solute Carrier (putative ADP/ATP Carrier
(AAC))

The ADP/ATP translocator is a member of the Mitochon-
drial Carrier Family (MCF), which catalyses the trans-
membrane exchange of ATP produced in the
mitochondria (or hydrogenosomes) for cytosolic ADP. All
members of this protein family exhibit a tripartite struc-
ture which consists of three consecutive sequence repeats
of about 100 residues each representing the 3 transmem-
brane domains [43]. This protein family is exclusively
present in Eukaryotes.

All bona-fide mitochondria, but also the hydrogeno-
somes of Nyctotherus ovalis and Neocallimastix/Piromyces,
possess members of the mitochondrial-type ADP/ATP
translocator subfamily. The hydrogenosomes of Tri-
chomonas vaginalis and the mitosomes of Entamoeba histo-
lytica and Antonospora locustae do not possess a
mitochondrial-type ADP/ATP translocator. Instead they
evolved alternative ADP/ATP carriers, which, of course,
belong to the mitochondrial carrier family [44]. In addi-
tion, the three members of the mitochondrial carrier fam-
ily of Trimastix pyriformis do not belong to the cluster of
genuine mitochondrial-type AACs; their function has not
yet been established [28]. While the AAC of Naegleria gru-
beri clusters within the bona-fide mitochondrial carriers,
the mitochondrial carrier protein of Psalteriomonas lan-
terna assumes an intermediate position between the gen-
uine mitochondrial AACs and the alternative transporters
of Trichomonas, Entamoeba and Antonospora (Fig. 6). The
phylogenetic position of the mitochondrial carrier protein
of Psalteriomonas lanterna argues that this mitochondrial
carrier might also be an alternative ADP/ATP carrier. Nev-
ertheless, the alternative possibility, that the mitochon-
drial carrier protein of Psalteriomonas lanterna is derived
from bona-fide AACs cannot be excluded.

[FeFe] Hydrogenase

Hydrogenases are metalloenzymes that catalyze the
reversible reaction that produces dihydrogen using two
electrons and two protons. These enzymes are classified in
three distinct classes according to the metallic composi-
tion of their prosthetic groups: the [Fe]-hydrogenases,
only present in methanogenic Archaea; the [NiFe]-hydro-
genases, widespread within prokaryotic organisms; and
finally, the oxygen sensitive [FeFe|-hydrogenases [45].

[FeFe]-hydrogenases are rather common in anaerobic Bac-
teria and Archaea, but in eukaryotes its presence is limited
to a few species of anaerobic protists, anaerobic chytrid
fungi and some green algae. In general, the hydrogenase is
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located in membrane-bounded organelles, i.e. plastids or
hydrogenosomes. In Giardia and Entamoeba the enzyme is
located in the cytoplasm [46]. [FeFe]-hydrogenases are
generally monomeric and exhibit a multi-domain struc-
ture, with a very well conserved active site of ca. 350 resi-
dues - the H-cluster - and a variably sized N-terminal
domain containing up to four Fe-S clusters [47]. This phy-
logeny was computed using the H-cluster portion of the
protein, due to the modular structure of the hydrogenases,
and it positions Psalteriomonas lanterna as a sister group of
the algal and fungal hydrogenases (Fig.7).

Pyruvate:Ferredoxin oxidoreductase (PFO)

Pyruvate is of central importance for the energy metabo-
lism of cells. Its oxidative decarboxylation leads to the for-
mation of acetyl-CoA and CO,. Aerobic species possess a
pyruvate dehydrogenase (PDH) multi-enzyme complex,
which catalyzes this reaction and specifically reduces
NAD+. Anaerobic species in general use another set of
specialized enzymes, which reduce low-potential electron
carrier proteins, e.g. ferredoxin or flavodoxin, instead of
pyridine nucleotides like NAD [48,49]. One of these
enzymes is the pyruvate:ferredoxin oxidoreductase (PFO),
which is present in many eubacteria and archaea, but also
in a restricted number of anaerobic eukaryotes, like Tri-
chomonas vaginalis [17], Trimastix pyriformis [28], Giardia
lamblia and Entamoeba histolytica [50]. PFO seems not to
be present in the aerobic amoeboflagellate Naegleria gru-
beri. It is regarded as a hallmark protein for hydrogeno-
somes or organisms with mitosomes [50], although PFO
or the related PNO have also been detected in a few organ-
isms with mitochondria, e.g. Euglena and Chlamydomonas.
The PFO of Psalteriomonas lanterna branches with the
enzymes of Trichomonas vaginalis and Blastocystis, but here
is still some discussion regarding the intrinsic function of
PFO [51] (Fig. 8). In Blastocystis, which belongs to the
Straminopila and which possesses a hydrogenosome-like
organelle, two EST clusters encoding a PFO and a PNO
(pyruvate:NADP+ oxidoreductase) were identified. Bio-
chemical studies have so far provided only evidence for
PNO activity [51].

Propionyl-CoA carboxylase (PCCB)

Propionyl-CoA carboxylase is a biotin dependent enzyme
that catalyses the ATP dependent carboxylation of propio-
nyl-CoA to D-methylmalonyl-CoA. It is involved in the
metabolism of odd-chained fatty-acids, cholesterol and
the essential amino acids threonine, methionine, valine
and isoleucine [52].

The PCC structure consists of two heterologous subunits,
alpha and beta, encoded by PCCA and PCCB genes,
respectively. The dodecamer enzyme complex is arranged
in an alpha6beta6 conformation [53].
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ML phylogeny of the putative ADP/ATP carrier (member of the Mitochondrial Solute Carrier family). Branch
values are the bootstrap percentages, and the tree was computed using a RtREV+4 discrete-rate G+F.

PCC is involved in metazoan ubiquitous pathways; it has
a patchy distribution among other Eukaryotes, suggesting
multiple gene loss events [54,55] and it was included in
our analysis, because of its location in the mitochondrial
matrix and its pivotal metabolic role. The phylogenetic

analysis shows a 100% bootstrap value for the clustering
between Psalteriomonas lanterna and Naegleria gruberi (Fig.
9), which is consistent with the results obtained with
Hsp60 and points to a close relationship between Naegle-
ria's mitochondrion and Psalteriomonas's hydrogenosome.
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NADH: ubiquinone oxidoreductase 51 kDa subunit
(Complex I -ndufvi/NuoF)

NADH: ubiquinone oxidoreductase, commonly known as
mitochondrial Complex I, is the largest of the five
OXPHOS complexes present in the mitochondrial mem-
brane of aerobic organisms, comprising 45 proteins in
human [56]. This protein complex can be divided into 3
functional modules: the dehydrogenase module which is
responsible for the oxidation of NADH, the hydrogenase
module that shuttles the released electrons, and finally,
the transporter module, which pumps protons across the
mitochondrial membrane [57]. The 51 kDa subunit,
encoded by the ndufvi/nuoF nuclear gene, is an essential
part of the dehydrogenase module because it carries the
NADH binding site. Also it binds two co-factors: flavin
mononucleotide (FMN) which is an electron carrier mol-
ecule that acts as a hydrogen acceptor and one 4Fe-4S clus-
ter, which captures the electrons released from the NADH
oxidation [58]. Despite its role in mitochondrial Complex
I, this protein has been found in the absence of most of

the remaining proteins of this complex in at least two
organisms: Trichomonas vaginalis [59] and Schizosaccharo-
myces pombe [56], where it is believed to bind and oxidize
NADH, potentially functioning as a diaphorase for the
hydrogenase. Once again, the link between Psalteriomonas
and Trichomonas is present in this phylogeny, showing
also that the 51 kDa of Psalteriomonas belongs to the clus-
ter of mitochondrial and alpha-proteobacterial enzymes
(Fig. 10).

Glutamate dehydrogenase (GDH)

Glutamate dehydrogenase (GDH) is a mitochondrial
enzyme widely distributed in the three domains of life. It
catalyzes the reversible oxidative deamination of gluta-
mate to 2-oxoglutarate and ammonia, using either NAD
or NADP as a co-factor. This enzyme is classified in three
basic types, according to its co-factor specificity: the NAD
specific, the NADP specific and the dual enzyme which
accepts either of these. These enzymes are homopoly-
meres, commonly composed by two to six subunits [60].
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Phylogenetic tree of the Pyruvate:ferredoxin oxidoreductase, computed by ML with WAG+4 discrete-rate

G+I+F. Branch support values represent bootstrap values.

While multicellular eukaryotes present only the dual
enzyme, fungi have both co-factor specific enzymes and
protists possess any combination of dual and specific
GDHs [61]. The phylogenetic analysis clusters Psalteri-
omonas within the Ciona, Spironucleus and Giardia branch
(Fig. 11). The position of N. gruberi relative to that of Psal-
teriomonas is at odds with their relation observed in the
PCCB and the Hsp60 phylogeny. Glutamate dehydroge-
nases show evidence of frequent lateral gene transfer [61],
providing an explanation for this inconsistency.

Conclusion

The hydrogenosomes of Psalteriomonas lanterna are mor-
phologically similar to the mitochondria of its relatives,
the aerobic Heterolobosea, if one ignores the absence of
cristae in Psalteriomonas lanterna. This becomes evident
from their shape, the double membrane, which bounds
both types of hydrogenosomes of Psalteriomonas lanterna,
and the cisterns of rough ER that surround the cytoplas-
mic forms of the hydrogenosomes. This is characteristic
for the mitochondria of the aerobic Heterolobosea,

which, in contrast to the hydrogenosomes of Psalteri-
omonas lanterna, possess full-fledged cristae. However,
there are no reports that the mitochondria of the aerobic
Heterolobosea can form stacks like the hydrogenosomes
of P. lanterna.

The molecular data, which are summarized in Table 1,
also support the similarity between the hydrogenosomes
of P. lanterna and the mitochondria of the aerobic Heter-
olobosea since the mitochondrial proteins Hsp60 and
Propionyl-CoA Carboxylase B of Psalteriomonas lanterna
are closely related to their homologues of Naegleria gru-
beri. The close phylogenetic relationship between Psalteri-
omonas lanterna and Naegleria gruberi had also been shown
by the analysis of the 18S rRNA [21].

The presence of a PFO, a [FeFe]hydrogenase, a putative
alternative ADP/ATP translocator and the 51 kD subunit
of mitochondrial complex I are characteristic hallmarks of
a hydrogenosomal metabolism resembling that of Tri-
chomonas vaginalis and Trimastix pyriformis [17,28]. How-
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ever, this is the first report of a PFO in a hydrogenosome
that is clearly derived from an aerobic mitochondrion.
This allows the development of a rudimentary metabolic
scheme (Fig. 12). The decarboxylation of pyruvate by PFO
yields electrons, which, analogous to the situation in Tri-
chomonas [17], requires a ferredoxin like protein similar to
the one described earlier [27]. However, Blast analysis of
the published ferredoxin sequence fails to reveal homolo-
gies with well-characterized ferredoxins. Moreover, the AT
content of the gene is dramatically lower than that of
other genes analysed in this study. Finally, an analysis of
the codon usage with the aid of a principal component
analysis clearly excludes the published ferredoxin
sequence from the cluster of Psalteriomonas genes (not
shown). Therefore, it is very unlikely that the published
sequence is a Psalteriomonas ferredoxin, and, conse-
quently, a genuine ferredoxin of P. lanterna still awaits
detection.

Consequently, the transfer of the electrons from the PFO
to the hydrogenase in our scheme (Fig. 12) remains
unclear. It is possible that the 51 KDa protein might be
involved since it can function as a diaphorase [17,59,62].

In conclusion, both the morphology of the hydrogeno-
somes and the molecular data strongly support the inter-

pretation that the hydrogenosomes of Psalteriomonas
lanterna and the mitochondria of the aerobic Heterolo-
bosea share a common ancestor. The hydrogenosomes of
Trichomonas are metabolically similar, but morphologi-
cally distinct, and they represent a peculiar type of hydrog-
enosome that lacks related mitochondrial relatives. Also
the hydrogenosomes of ciliates and chytridiomycete fungi
are different. And since the hydrogenosomes of the ciliate
Npyctotherus ovalis share a common ancestry with ciliate
mitochondria, while the hydrogenosomes of the anaero-
bic chytrids Neocallimastix and Piromyces share an ancestry
with fungal mitochondria, our study provides a new
example of the evolution of a hydrogenosome from an
aerobic relative [14], and the first example of a Tri-
chomonas-like hydrogenosome from an aerobic mitochon-
drion.

Methods

Cultivation of Psalteriomonas lanterna

Psalteriomonas lanterna was isolated from anoxic sediment
from a sedimentation pond of a waste water treatment
plant near Nijmegen about 20 years ago and cultured
since then as a polyxenic culture. Bottles of 100 ml, 250
ml, 500 ml and 1000 ml were filled to 40% with 5 mM
phosphate buffer (pH 6.8), 0.1 mM cysteine-HCI, 1 ml/]
Pfennigs metal solution, 0.025% proteose pepton and
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NADH:ubiquinone oxidoreductase 51 kDa subunit ML phylogeny with bootstrap values indicated in the
branches, and computed using a WAG+4 discrete-rate G.

Resazurine (50 pM w/v). The bottles were stoppered with
butyl-rubber stoppers, evacuated, flushed with N, and
filled with this gas until a final pressure of 1.5 Bar. These
bottles were sterilized and inoculated with Psalteriomonas
lanterna cells. Oxygen was added until a final concentra-
tion of 1%. Twice a week bottles were checked; if they
were completely anaerobic, oxygen was added up to 1%.
The bottles were stored at 22 °C and exposed to light every
day for several hours.

Generation of the EST library

Cells were harvested by centrifugation at room tempera-
ture in 50 ml glass tubes in a Hettich centrifuge for 5 min-
utes at 2000 r.p.m.. The supernatant was removed and the
cell pellet was immediately dissolved in 8 M guanidin-

iumchloride (final concentration 6M). RNA was isolated
and cleaned with the RNeasy Kit (Qiagen). The cDNA was
created with the "SMART"- technology (BD Biosciences).
The produced cDNA was amplified. Then the cDNA was
restricted with Sfi I and size fractionated (fraction 1-2.5 kb
and >2.5 kb). The DNA fragments were cloned site-
directed. For the transformation we used competent E. coli
DHI10B cells. The library was generated by Genterprise,
Mainz, Germany. About 480 randomly chosen clones
were sequenced and analyzed using the BLAST X tool [36].
The A+T content was calculated, and clones with an A+T
content of approximately 67-72% were regarded as
derived from Psalteriomonas lanterna. The EST sequences
varied largely in length and, in general, were incomplete.
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Generation of full-length cDNA

The sequence of the [FeFe] hydrogenase was nearly com-
pleted to the N- and C-terminal ends starting from the H-
cluster (that was sequenced earlier [63]). Total RNA was
isolated from Psalteriomonas cells using the RNeasy kit
(Qiagen) according to the manufacturer's manual and
subsequently, cDNA was generated using SuperScript
(Invitrogen) and an anchored oligo-d(T) primer. Alterna-
tively, SMART RNA amplification (Clontech) was used to
generate (near) full-length cDNA sequences from all genes
discussed here except 51 kDa.

Electron microscopy

The electron microscopic preparations followed a modi-
fied Karnovsky procedure (4% paraformaldehyde and 5%
glutardialdehyde in phosphate buffer pH 7.2). For post-

fixation, the OsO,/K;Fe(CN), method of Hepler [64] was
applied. En block staining was performed with 2% uranyl
acetate. After embedding in Epon 812 [65], sections were
made on a Reichert Om U2 ultramicrotome, stained with
lead citrate and uranyl acetate, and examined in a Zeiss
109 T electron microscope.

Sequence data retrieval and alignment

The longest ORF from the conceptual translation (univer-
sal genetic code) of the ESTs of Psalteriomonas was
obtained for each gene using Expasy's Translate tool http:/
/www.expasy.org/tools/dna.html. The genes received the

following GenBank accession numbers: 51kd:
GQ924927, ADP/ATP carrier: (GQ924928, PCCB:

GQ924929, hydrogenase: GQ924930, PFO: GQ924931,
elongation factor alpha: GQ924932, Hsp60: GQ924933,
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Table I: Presence of hydrogenosomal genes of P. lanterna in various genomes

Mitochondrion Mitosome Hydrogenosome
Hsa Sce Tth Pte Pfa Ngr Lma Cpa Ecu Gla Ehi Tva Nov Pla Nfr

EFl-alpha Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
Hsp60 Y Y Y Y Y Y Y Y N Y Y Y Y Y Y
AAC Y Y Y Y Y Y Y Y Y« N Yx o Yx Y YooY
[FeFe]hydrogen. N N N N N Y N N N Y Y Y Y Y Y
PFO N N N N N N N Y N Y Y Y N Y N
PCCB Y N Y Y N Y Y N N N N N - Y -
51 kDa Y N Y Y N Y Y N N N N Y Y Y -
GDH Y Y Y Y Y Y Y N N Y Y Y Y Y -

Hsa: Homo sapiens, Sce: Saccharomyces cerevisiae, Tth: Tetrahymena thermophila, Pte: Paramecium tetraurelia, Pfa: Plasmodium falciparum, Ngr:
Naegleria gruberi, Lma: Leishmania major, Cpa: Cryptosporidium parvum, Ecu: Encephalitozoon cuniculi, Gla: Giardia lamblia, Ehi: Entamoeba
histolytica, Tva: Trichomonas vaginalis, Nov: Nyctotherus ovalis$; Pla: Psalteriomonas lanterna$, Nfr: Neocallimastix frontalis®.

Y: present, N: absent, Y*: alternative protein, -: not known;$: no complete genome available

and Glutamate dehydrogenase GQ924934. Its homolo-  Sequences were aligned with ClustalW (version 1.83)
gous protein sequences were retrieved from GenBank nr  [66], and manually inspected and refined.

database, using PsiBLAST [36] with 0.005 e-value cut-off

and after three iterations. Sequences from Naegleria gruberi ~ Construction of phylogenetic trees

were collected from its genome project webpage http:// Given the large number of sequences retrieved by homol-
genome.jgi-psf.org/Naegrl/Naegrl.home.html. ogy search, a restricted number of taxa, representing the
s
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Figure 12
Rudimentary metabolic scheme of the hydrogenosomes of P. lanterna.
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major Eukaryotic branches, were selected to integrate the
phylogenetic study. In order to facilitate this selection, a
preliminary analysis of the complete dataset was carried
out by inspecting the global topology of 1000 times boot-
strapped Neighbour-Joining trees, computed with Clus-
talW [66]. When possible, a small outgroup of prokaryotic
sequences was included to root the trees. After the careful
selection of the final dataset, we pursued to select the best-
fit model of amino acid replacement, according to the
Akaike Information Criterion (AIC) as implemented in
the ProtTest (version 2.2) software [67]. Maximum Likeli-
hood (ML) phylogenies were computed with PhyML (ver-
sion 2.4.4) [68], using the model previously chosen. (For
the detailed description of the model and parameters used
for each phylogenetic inference, including the matrix of aa
substitution; number of Gamma discrete rate-categories
(+G); proportion of invariable sites (+I) and observed
amino acid frequencies (+F), see figure captions). A boot-
strap analysis was conducted with 100 samples for each
protein.

Codon Usage and Principle Component Analysis

In order to rule out the presence of contaminants in the
EST set, we performed a codon usage analysis using the
Cusp program from the EMBOSS package (version 6.0.1)
[37]. We also included in our analysis the ferredoxin
sequence previously published by Brul et al. [27] to ana-
lyse whether it is of Psalteriomonas origin or not. A princi-
ple component analysis was conducted using the prcomp
function of the R package (R Development Core Team,
2008).
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