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Abstract
Background: Horizontal gene transfer (HGT) is a vexing fact of life for microbial phylogeneticists.
Given the substantial rates of HGT observed in modern-day bacterial chromosomes, it is envisaged
that ancient prokaryotic genomes must have been similarly chimeric. But where can one find an
ancient prokaryotic genome that has maintained its ancestral condition to address this issue? An
excellent candidate is the cyanobacterial endosymbiont that was harnessed over a billion years ago
by a heterotrophic protist, giving rise to the plastid. Genetic remnants of the endosymbiont are still
preserved in plastids as a highly reduced chromosome encoding 54 – 264 genes. These data provide
an ideal target to assess genome chimericism in an ancient cyanobacterial lineage.

Results: Here we demonstrate that the origin of the plastid-encoded gene cluster for
menaquinone/phylloquinone biosynthesis in the extremophilic red algae Cyanidiales contradicts a
cyanobacterial genealogy. These genes are relics of an ancestral cluster related to homologs in
Chlorobi/Gammaproteobacteria that we hypothesize was established by HGT in the progenitor of
plastids, thus providing a 'footprint' of genome chimericism in ancient cyanobacteria. In addition to
menB, four components of the original gene cluster (menF, menD, menC, and menH) are now
encoded in the nuclear genome of the majority of non-Cyanidiales algae and plants as the unique
tetra-gene fusion named PHYLLO. These genes are monophyletic in Plantae and chromalveolates,
indicating that loci introduced by HGT into the ancestral cyanobacterium were moved over time
into the host nucleus.

Conclusion: Our study provides unambiguous evidence for the existence of genome chimericism
in ancient cyanobacteria. In addition we show genes that originated via HGT in the cyanobacterial
ancestor of the plastid made their way to the host nucleus via endosymbiotic gene transfer (EGT).

Background
Bacterial chromosomes are subject to a constant influx of
genes through horizontal gene transfer (HGT) that often
occurs from phylogenetically distant organisms [1]. When

foreign genes confer a selective advantage they are main-
tained by the host organism and vertically transmitted to
descendents. Consequently, over evolutionary time the
continual introduction of foreign genes into bacterial
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chromosomes is expected to result in a highly chimeric
genome. Estimates of the frequency of HGT in prokaryo-
tes are variable depending on the bioinformatic approach
used, the organism(s) analysed, and inherent limits to the
detection of intraphylum HGT among closely related taxa
[1-4]. Overall, percentages of genes acquired by HGT in a
typical prokaryote tend to average 2–25% of the total
genome [1-4] but exceptional cases are known with values
as low as 1.6% in Mycoplasma genitalium or as high as
32.6% in Treponema pallidum [1]. Regardless of the actual
number that is cited, the magnitude of observed HGTs
demonstrates that a large fraction of genes in extant
prokaryotes originated via lateral transfer. The question
remains open whether HGT might have had a similar, or
even more dramatic impact on early bacterial evolution.
The genomes of ancient prokaryotes could potentially dif-
fer substantially in terms of gene content and phyloge-
netic diversity from their present-day counterparts [4,5].
These considerations are particularly intriguing when for-
mulated in the context of the endosymbiotic origin of the
plastid that is derived from the capture of a cyanobacte-
rium ca. 1.5 billion of years ago [6,7]. This endosymbiotic
occurred in the founding lineage of photosynthetic
eukaryotes, the Plantae [8]. Here we ask the question, is
there evidence of chimericism in plastid genes that would
provide insights into ancient cyanobacterial genomes?
The plastid is a 'living fossil' ideally suited for this purpose
because it has largely been protected from HGT within the
eukaryotic host [9] (for exceptions see below), thereby
conserving its ancient genome characteristics.

The plastid genome is a highly reduced version of the
cyanobacterial endosymbiont [8], retaining between 54–
264 genes [10]. Phylogenetic surveys of conserved plastid
genes convincingly demonstrate their cyanobacterial
ancestry [11,12]. Furthermore, phylogenomic analyses
indicate that ca. 500–1500 cyanobacterial genes were
transferred to the nucleus (endosymbiotic gene transfer,
EGT) and their gene products are largely targeted back to
the plastid [13-15]. Three known cases contradict the
notion of a strictly cyanobacterial ancestry for plastid
genes. The first two are the rbcL gene in red algae and chro-
malveolates and the rpl36 gene shared uniquely by cryp-
tophytes and haptophytes that are phylogenetically most
closely related to homologs within the Alphaproteobacte-
ria and to a Planctomycete related to Rhodopirellula baltica,
respectively [9,16]. The third case is a firmicutederived
gene for the tau/gamma subunit of DNA polymerase III
(dnaX) encoded in the plastid genome of the cryptophyte
Rhodomonas salina [17]. DnaX is absent from all other
sequenced plastid genomes including that of another
cryptophyte (Guillardia theta) [17]. Their limited distribu-
tion (rpl36, dnaX) and nested relationship to Alphapro-
teobacteria (rbcL) suggest that these HGT events are
unlikely to be examples of genome chimericism that was

vertically inherited from the captured cyanobacterium fol-
lowed by differential loss in Plantae [9,16,17]. In contrast,
here we provide phylogenetic evidence that plastid and
nuclear-encoded proteins for the biosynthesis of phyllo-
quinone (PhQ), a redox cofactor of the Photosystem I
complex in algae and plants, may represent surviving
traces of a chimeric genome in the captured endosymbi-
ont.

Results
Homologous genes for PhQ biosynthesis are plastid-
encoded in Cyanidiales but nuclear-encoded in the 
majority of photosynthetic eukaryotes
Biosynthesis of the Photosystem I cofactor PhQ occurs in
cyanobacteria, plants, and algae and is analogous to that
of menaquinone (MQ), a mobile electron carrier in many
bacterial bioenergetic systems [18]. Both biosynthetic
pathways have been characterized at the genetic and bio-
chemical level in prokaryotes and eukaryotes and depend
on 8 enzymatic steps catalyzed by the so-called 'Men pro-
teins' (Figure 1a) [18-23]. In MQ-using bacteria and
cyanobacteria, men homologs are present as individual
genes usually grouped within operons or in proximally
encoded transcripts (Figure 1b). In available genomes of
plants, green algae, and stramenopiles menA, menB, menE,
and menG are nuclear-encoded and constitute independ-
ent loci. Genes encoding MenF, MenD, MenC, and MenH
tend to be united (with some rearrangements) as a single
nuclear-encoded, composite gene termed PHYLLO (Fig-
ure 1b and Materials and methods) [18]. In higher plants
menF (isochorismate synthase, ICS) is an independent
nuclear-encoded gene that is distal to PHYLLO (Figure 1b)
[18].

In contrast to their nuclear location in most algae and
plants, men genes are plastid-encoded in the early diverg-
ing Cyanidiales red algae Cyanidium caldarium and Cyanid-
ioschyzon merolae (Figure 1b). In these taxa, the men
homologs (including menF, menD, and menC that are
fused in nuclear encoded PHYLLO) are present as individ-
ual genes and grouped in a compact cluster that resembles
the structure of prokaryotic operons. The nucleotide
sequence of the plastid men cluster of the Cyanidiales alga
Galdieria maxima has been partially determined in this
study and displays a similar prokaryoticlike genetic organ-
ization that appears to be syntenic with the locus in Cya-
nidioschyzon merolae (Figure 1b). Collectively, these
observations lead us to postulate that plastid and nuclear-
encoded men genes in algae and plants are of endosymbi-
ont origin and the nuclear location of most genes is due to
EGT.
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PhQ/MQ methabolic pathway and phylogeny of MenFD proteinsFigure 1
PhQ/MQ methabolic pathway and phylogeny of MenFD proteins.(a) Shown are the Men proteins that control the enzymatic steps necessary for the conversion of 
chorismate to the final product MQ in bacteria and PhQ in cyanobacteria and in photosynthetic eukaryotes. (b) Bayesian majority rule consensus tree of a concatenated align-
ment of MenF and MenD proteins. The nodal numbers represent bootstrap support values inferred using PHYML (left of slash mark) and neighbor joining (1000 replicates, right 
of slash mark). Only bootstrap values >50% are shown. For the sake of clarity only support values at nodes of highest interest have been included in the figure. The thick 
branches have a BPP > 0.95. The branch lengths in this tree are proportional to the number of substitutions per site (see scale in figure). Men genes encoded as clusters in chro-
mosomes of prokaryotes and in the plastid genome of Cyanidiales (black boxes), as well as the architecture of the PHYLLO gene (yellow boxes) in nuclear genomes of photosyn-
thetic eukaryotes, are indicated for each taxon. The break in the 5' terminus of PHYLLO in higher plants indicates a gene-splitting event during evolution [18]. In addition, in plants 
menF is an individual gene distinct from PHYLLO. The men gene cluster in the plastid of Galdieria maxima was only partially sequenced. White boxes with numbers inside indicate 
the number of genes with functions unrelated to the menaquinone biosynthesis that separate the men genes. Double slashes indicate a large chromosomal separation between 
men genes. According to their structure, gene clusters can be divided in two groups (Group 1 and Group 2) that are correlated with the tree topology. This tree was arbitrarily 
rooted on the branch leading to the Actinobacteria.
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MenF, menD, menC, menB, menE, and menH were 
originated via a single HGT event in the ancestor of 
plastids
To test the hypothesis of a common endosymbiotic origin
of algal and plant men genes, we first inferred separate
maximum likelihood phylogenies for MenF and MenD.
These trees were essentially congruent (results not shown)
therefore we concatenated the proteins to gain greater
phylogenetic resolution. To generate the alignment, we
used the two proteins that are already fused in PHYLLO in
algae, whereas in plants we concatenated MenF (i.e., the
ICS1 paralog in Arabidopsis) with MenD in PHYLLO. The
resulting MenFD tree (Figure 1b) recovers the monophyly
of PHYLLO and MenFD from the Cyanidiales (Bayesian
posterior probability, BPP = 0.98, PHYML bootstrap, PB =
3%, neighbor joining bootstrap, NJB = 77%), consistent
with the idea that the tetra-fusion PHYLLO arose from an
ancestral plastid gene cluster whose remnants are still
present in the plastid genome of Cyanidiales. The distri-
bution of operon characteristics (not their overall phylog-
eny) supports the existence of two superclades that we
provisionally named Group 1 and Group 2. Group 1 con-
tains compact, gene-rich men gene clusters, the co-locali-
zation of menF and menD, and contains menH, whereas
Group 2 is defined by relatively gene-poor, dispersed (as
in cyanobacteria) clusters. Group 1 contains the unex-
pected phylogenetic relationship between MenFD in algae
and plants with homologs from Chlorobi, Gammapro-
teobacteria, Rubrobacter xylanophilus, and Salinibacter ruber
(BPP = 1.0, PB = 100%, NJB = 100%). These taxa also
share a similar operon structure and gene content. Cyano-
bacterial MenFD in Group 2 is distantly related to the
algal/plant proteins forming a sister group to Bacter-
oidetes and Flavobacteria. The approximately unbiased
(AU) test was used to reposition the cyanobacterial clade
on all other basal (20 in total) branches in the tree. Using
this approach, the union of cyanobacteria with the algal/
plant clade in Group 1 was significantly rejected by the
AU-test (P < 0.001). Together these results indicate that
the phylogenetic history of MenF and MenD proteins is
not congruent with a cyanobacterial ancestry and most
likely reflects an ancient HGT event.

The topology recovered for the MenC, MenB, MenE, and
MenH trees (see Additional files 1, 2, 3) recapitulates the
MenFD phylogeny. MenC (part of PHYLLO) and MenB
are nuclear-encoded in photosynthetic eukaryotes. These
proteins and the homologs encoded in the plastid
genome of Cyanidiales are phylogenetically most closely
related to sequences in the MQ operon of Chlorobi and
Gammaproteobacteria. This is also the case for plastid-
encoded MenE in Cyanidiales (see Additional file 3) that
is nested in a common clade with homologs in Chlorobi/
Gammaproteobacteria. In contrast, MenE is encoded in
the nuclear genome of Arabidopsis and other plants and

algae and branches with Deltaproteobacteria suggesting a
phylogenetic origin that is distinct from the Cyanidiales
gene (see Additional file 3). Following the trend shown
for MenFD (Figure 1b), in the trees of MenC, MenB, and
MenE the cyanobacterial homologs are phylogenetically
distantly related to the algal/plant clade (see Additional
files 1, 2, 3). MenH proteins are almost exclusively found
in taxa of Group 1 (for exceptions see below) and the
homologs of plants and algae are nested (BPP = 1.0, PB =
96%) among Chlorobi and Gammaproteobacteria
homologs (Figure 2). The consistent phylogenetic pattern
observed for the six first enzymes of the PhQ biosynthesis
in plants and algae (with the exception of the nuclear
encoded MenE) suggests that they have the same origin.
This implies that the cyanobacterial ancestor of the pri-
mary plastid acquired a complete men gene cluster (pre-
sumably as an operon) via HGT from a single source
related to Chlorobi/Gammaproteobacteria. That Men
homologs of Rubrobacter xylanophilus and Salinibacter ruber
are also nested within Group 1 representatives and are dis-
tantly associated to their taxonomic relatives (Actinobac-
teria and Bacteroidetes homologs are in the Group 2)
suggests that these taxa also gained their men operon from
a donor related to the source of the algal/plant genes (Fig-
ure 1b).

Independent acquisition of menH by cyanobacteria from 
a source related to Chlorobi
In contrast to the general absence of a detectable menH
gene from taxa of Group 2 (Figure 1b), we were able to
identify this gene in members of the cyanobacterial fami-
lies Oscillatoriales and Nostocales. In Trichodesmium eryth-
raeum (Figure 1b) menH is encoded within the men gene
cluster. Surprisingly, phylogenetic analysis of MenH (Fig-
ure 2) demonstrates that cyanobacteria have acquired this
gene from Chlorobi-related bacteria. This tree shows that
algal and plant MenH is not closely related to cyanobacte-
rial homologs. Therefore, the menH genes in Oscillatori-
ales and Nostocales are not vestiges of the ancient gene
cluster that was putatively transferred via primary endo-
symbiosis into eukaryotes but rather is a more recent inde-
pendent HGT event in some groups of cyanobacteria. This
result illustrates the feasibility of men gene transfer into
cyanobacteria and supports our model of an ancient gene
cluster acquisition by the plastid ancestor.

The MenA phylogeny supports additional HGT events 
during plastid evolution
A menA gene is also present in the men cluster in the plas-
tid genome of Cyanidiales (Figure 1b), whereas it is
nuclear encoded in other algae and plants. The phylogeny
of MenA reveals however that the Cyanidiales gene is not
closely related to homologs in cyanobacteria, Chlorobi, or
to the majority of Gammaproteobacteria (Figure 3).
Instead, Cyanidiales MenA is monophyletic (BPP = 1.0)
Page 4 of 12
(page number not for citation purposes)



BMC Evolutionary Biology 2008, 8:117 http://www.biomedcentral.com/1471-2148/8/117
with two Gammaproteobacteria (Shewanella woodyi and
Reinekea sp. MED297) that are distantly related to the
other members of this bacterial clade. The AU-test in
which the Cyanidiales MenA clade was moved to 20 alter-
nate basal branches in the tree significantly rejects the sis-
ter group relationship of this clade to cyanobacteria (P =
0.017), Chlorobi (P = 0.009), or Gammaproteobacteria
(P = 0.001). These results imply that the menA gene and
the men gene cluster were obtained in different HGT
events, involving distinct donor taxa. The menA gene has
been incorporated into the gene cluster and exclusively
maintained in the plastid genome of Cyanidiales with the

remainder of the men genes. Furthermore, the phylogeny
of MenA demonstrates that the homologs encoded in the
genome of green algae and plants are of cyanobacterial
descent (BPP = 1.0, PB = 100%). One possible explana-
tion of our data is that two menA genes were present in the
prokaryotic endosymbiont, one of cyanobacterial prove-
nance and other introduced by HGT from another dis-
tantly related source. These genes were differentially lost
from Cyanidiales and members of the green lineage with
the former retaining the plastid-encoded non-cyanobacte-
rial gene and the latter retaining the cyanobacterial copy
that was transferred to the nucleus. An alternative expla-

Unrooted Bayesian majority rule consensus tree of MenHFigure 2
Unrooted Bayesian majority rule consensus tree of MenH. Chlorobi and the cyanobacterial groups Oscillatoriales and 
Nostocales form sister clades, suggesting a HGT between these taxa. The position of diatoms (i.e., T. pseudonana and P. tricor-
nutum) MenH is indicated by the red arrow. These highly diverged long branched sequences were excluded from the final anal-
ysis. The numbers at the nodes are PHYML bootstrap values (500 replicates). Only bootstrap values >50% are shown. For the 
sake of clarity only support values at nodes of highest interest have been included in the figure. The thick branches have a BPP 
> 0.95. The branch lengths in this tree are proportional to the number of substitutions per site (see scale in figure).
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nation is that the menA gene in the green lineage was
directly acquired from cyanobacteria via HGT into the
nucleus of these taxa rather than by EGT from the endo-
symbiont. Under this scenario, the HGT event was fol-
lowed by loss of the plastid encoded menA gene in the
ancestor of green algae. MenA is not plastid-encoded in
other non-Cyanidiales red algae such as Gracilaria tenuis-
titpitata therefore it is unknown which gene copy is
nuclear-encoded in these taxa.

MenA in diatoms and the Rhizarian Bigelowiella natans are
nuclear-encoded and form a monophyletic group (BPP =
1.0, PB = 99%) that is not phylogenetically closely related
to homologs in Cyanidiales or the green lineage (Figure
3). These genes define another HGT event that likely
occurred in the nucleus of these taxa involving an
unknown bacterial source. Chromalveolates (e.g., dia-

toms) and Rhizaria have recently been proposed to be
monophyletic [24] and the MenA tree is consistent with
this idea, showing a unique HGT event shared by these
taxa. MenG shows a similar phylogenetic history to MenA,
except that MenG is no longer plastid-encoded. This gene
is present in the nucleus of all photosynthetic lineages and
the phylogeny of MenG provides strong support for a
cyanobacterial provenance in the green lineage and an ori-
gin in Cyanidiales and diatoms from Deltaproteobacteria
(see Additional file 4).

Discussion
HGT in the plastid ancestor
We propose that menF, menD, menH, menC, menB, and
menE that comprise an operon or a gene cluster, and the
menA gene was introduced via two independent HGT
events into the genome of the cyanobacterial ancestor of

Unrooted Bayesian majority rule consensus tree of MenAFigure 3
Unrooted Bayesian majority rule consensus tree of MenA. Green algae and plants have a cyanobacterial form of MenA, 
whereas plastid-encoded MenA in Cyanidiales is unrelated to cyanobacteria and likely originated from a HGT event from a dis-
tantly related source that introduced (and thereby duplicated) this gene in the genome of the plastid ancestor. The numbers at 
the branches are PHYML bootstrap values (500 replicates). Only bootstrap values >50% are shown. For the sake of clarity only 
support values at nodes of highest interest have been included in the figure. The thick branches have a BPP > 0.95. The branch 
lengths in this tree are proportional to the number of substitutions per site (see scale in figure).
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primary plastids. The remnants of the men gene cluster
and menA are still present in the plastid genome of the
Cyanidiales in a prokaryotic-like gene arrangement. In
contrast, the components of the horizontally transferred
men cluster were moved to the nucleus in the majority of
algal lineages. An alternative interpretation of our data is
that the men genes were introduced into the plastid
genome of the Plantae ancestor by a HGT event that post-
dates primary endosymbiosis but precedes the split of at
least the red and green algae (i.e., glaucophyte genes have
not yet been described). HGT into plastids is the most
likely explanation for the origin of the rbcL gene in red and
chromalveolate algae, the rpl36 gene shared by crypto-
phytes and haptophytes, and the unique occurrence of the
dnaX gene in R. salina (see above) [9,16,17,25]. We sug-
gest that several lines of (albeit) circumstantial evidence
argue against this scenario for origin of the men gene clus-
ter. The first is that recent comprehensive phylogenomic
analyses of plastid genomes uncovered only the three
cases of HGT described above [9,17]. This result, when
magnified over the >1 billion years of plastid evolution
leads to the conclusion that plastid genomes are generally
resistant to HGT [9]. Second, the three known plastid
HGT events involve a perfect gene replacement (rpl36) [9],
a novel single gene insertion (dnaX) [17], and the replace-
ment of an intact operon (rbcLS) [16]. From our perspec-
tive, these mechanisms are unlikely to be the explanation
for the introduction of the horizontally transferred men
gene cluster in the plastid lineage for two reasons. First,
the plastid genome is essentially free of large new DNA
integrants. And second, a sparse, gene-poor men cluster of
cyanobacterial origin that putatively existed in the endo-
symbiont would provide a dispersed and poorly con-
served substrate for a single replacement involving
homologous recombination with a highly dissimilar DNA
segment containing six genes of Chlorobi/Gammaproteo-
bacteria provenance. We propose that it is more likely that
the introduction of the original men gene cluster occurred
in the more dynamic genomes of freeliving cyanobacteria,
where foreign genes are commonly co-integrated with
cyanophages in chromosomal genomic islands in events
not involving homologous recombination and that often
introduce redundant alleles that duplicate native cyano-
bacterial genes [26,27]. Following the original integration
we suggest that the native cyanobacterial men pathway in
the plastid forerunner was lost in favour of the foreign
gene cluster. The gain of an additional men cluster directly
into the newly established organelle, thereby creating
allelic redundancy is unlikely giving the known tendency
of endosymbionts (e.g., plastids, Carsonella) to rapidly
streamline their genomes by gene loss [28].

Comparative genomic analyses demonstrate that the
acquisition of foreign genes by HGT is common among
cyanobacteria [29]. In line with this idea, we provide clear

evidence for the ancient acquisition by cyanobacteria of a
foreign menH from a Chlorobi source (Figure 2). Simi-
larly, our phylogeny of MenC (see Additional file 1)
shows that this gene in Crocosphaera watsoni and Cyan-
othece sp. was introduced by HGT from a Firmicute source.
Together, these examples underline the case we make for
men gene cluster transfer into the once free-living plastid
ancestor. In a parallel example, the thecate amoeba
Paulinella chromatophore has a plastid-like photosynthetic
organelle, the cyanelle, which was also derived from a
cyanobacterium. The genomes of the cyanelle and the
cyanobacteria Prochlorococcus and Synechococcus that are
the closest relatives of the cyanelle share common compo-
nents of a carboxysomal operon (including the rbcL gene)
that is phylogenetically most closely related to Gamm-
aproteobacteria. This implies that the carboxysomal
operon was introduced by HGT into the common ances-
tor of Prochlorococcus and Synechococcus species and the
Paulinella cyanelle [30]. This constitutes a recent example
of the type of HGT event we postulate occurred for the
men gene cluster ca. 1.5 billion years ago.

Relics of endosymbiont genome chimericism may now 
reside in the nucleus
With regard to interphylum HGT, genome analysis of
cyanobacteria suggests that 23% of the tested genes pro-
vide conflicting phyletic patterns that include cases of
HGTs from donors outside the cyanobacterial clade [29].
In contrast, the majority of phylogenetic studies have
found a consistent signal of cyanobacterial ancestry in the
plastid genome [e.g., [11,12]]. If HGT was similarly prev-
alent at the time of endosymbiosis (and there is no obvi-
ous reason to think otherwise) then one would expect to
find many more examples of plastid genes that are not
phylogenetically affiliated with cyanobacteria. The current
data suggest however that the contribution of interphy-
lum HGT to the cyanobacterial ancestor of plastids was
rare and the men gene cluster represents an unlikely survi-
vor.

On the other hand, the apparent absence of additional
HGT events in the plastid could reflect a lack of thorough
analysis of all genes (not just the phylogenetically con-
served set) in all plastid genomes to assign their origins.
To assess this possibility, we did an additional phyloge-
nomic analysis in which all of the plastid protein-encod-
ing genes in Cyanidioschyzon, the glaucophyte Cyanophora
paradoxa, and the chlorophyte Nephroselmis olivacea were
used to query our large bacterial plus eukaryotic protein
database. The trees were sorted to identify any clear exam-
ples of non-cyanobacterial genes in these plastids [15]. No
other cases of interphylum HGT were found (consistent
with Rice and Palmer [9] and Khan et al., [17]) which
leads us to postulate that within the limits of these bioin-
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formatic approaches, the remaining set of plastid genes is
of cyanobacterial ancestry.

The absence of endosymbiont chimericism that is found
in modern-day plastids may reflect the fact that this
organelle encodes only 1/10 (ca. 200 out of 2,500 ances-
tral genes) of the original cyanobacterial genome. There-
fore, the evidence for ancient HGT may have been lost
over evolutionary time. Genes preserved in plastids gener-
ally have conserved roles in transcription and translation
(i.e., informational) or encode subunits of multiprotein
complexes involved in photosynthesis [31]. These
sequences may be more resistant to HGT than the set of
metabolic and house-keeping genes (i.e., operational)
that were lost. Operational genes have been demonstrated
in cyanobacteria to be relatively more frequently trans-
ferred than informational genes, although genes in all
functional categories are subject to HGT [29]. Many oper-
ational genes once encoded in the cyanobacterial ancestor
of plastids have been relocated to the nucleus since pri-
mary endosymbiosis [31]. The menF, menD, menC, menH,
and menB genes that are derived from original plastid gene
cluster, and possibly menA and menG (of cyanobacterial
origin), followed this path and are now nuclear-encoded
in the vast majority of algae and plants. From our perspec-
tive, a remarkable exception to this rule is the ancestral
men gene cluster that was, for unknown reasons, 'frozen'
in the plastid genome of a single algal group, the Cyanid-
iales. Finally, phylogenetic studies of nuclear encoded
plastid targeted proteins often show a phylogenetic his-
tory that is inconsistent with a cyanobacterial ancestry
[32-35]. Although these cases can be interpreted as exam-
ples of HGT into the nuclear genome of photosynthetic
eukaryotes, which is prevalent in some algae (e.g., chro-
malveolates) [e.g., [36-38]], our study at least raises the
possibility that some may have arisen from a putative chi-
meric cyanobacterial ancestor and trace their origin to
EGT [4,5].

In our phylogenomic analysis we failed to detect signifi-
cant departure from the cyanobacterial origin of plastid-
encoded genes apart from the known cases of rbcL [16]
and MQ/PhQ. This however should not be interpreted as
an absence of HGT in the plastid forerunner. In fact, com-
parative genomic analyses demonstrate that HGT is com-
mon in cyanobacteria, affecting ca. 61% of the genes [29].
These transfers are however largely intraphylum and
beyond the limits of detection of our study. Therefore it is
entirely possible (and probable) that plastid genomes
contain a highly reticulated pattern of gene ancestry that
predates primary endosymbiosis. In line with this idea,
results of a recent analysis of cyanobacteria-derived genes
in the nuclear genome of Plantae [39] showed that in
terms of presence/absence and sequence similarity, the
highest proportion of these proteins could be traced back

to Nostoc sp. PCC7120 and Anabaena variabilis
ATCC29143, identifying them as potential donor line-
ages. Nonetheless a substantial fraction was found to be
more similar to homologs in seven other studied cyano-
bacteria. These data suggest that even if the plastid ances-
tor was related to heterocyst-forming Anabaena/Nostoc, the
captured cell also contained genes from a phylogeneti-
cally broad spectrum of cyanobacterial lineages presuma-
bly as a consequence of ancient intraphylum HGT.

Conclusion
We asked the question, do plastid genomes still preserve
vestiges of HGT that occurred during the free-living phase
of the cyanobacterial endosymbiont? For this purpose our
phylogenetic study targeted the set of Men proteins
responsible for the biosynthesis of MQ in eubacteria and
PhQ in cyanobacteria and in photosynthetic eukaryotes.
These proteins are encoded in the plastid genome of the
red algae Cyanidiales and in the nuclear genome of algae
and plants, indicating that they were derived from the
cyanobacterial endosymbiont that gave rise to the plastids
and later on transferred to the nucleus by EGT. This result
clearly contradicts the expectation of a cyanobacterial
provenance for the MQ/PhQ pathway in Plantae, showing
an affiliation of these sequences to Chlorobi/Gammapro-
teobacteria (Figures 1b, 2; see Additional files 1, 2, 3). This
suggests that the cyanobacterial ancestor of the primary
plastid contained a complete men gene cluster (menF,
menD, menH, menB, menC, and menE) that originated via
HGT. In addition, the menA gene was also independently
derived by HGT in the plastid ancestor from an unknown
donor. The men gene cluster in Cyanidiales retains this
ancestral prokaryotic feature and thus represents a 'living
fossil' providing a view into ancient genome chimericism.
In contrast, Men homologs are nuclear-encoded in the
genomes of green algae, plants, and diatoms and are
monophyletic with the plastid-encoded homologs in Cya-
nidiales. This demonstrates that a chimeric component of
the endosymbiont genome was relocated in some lineages
from the plastid to the nucleus. The ancestral cyanobacte-
rial lineage that donated the plastid either went extinct or
is not yet represented in GenBank because the cyanobac-
teria in all of our trees analysis are clearly monophyletic
and display a sporadic pattern of men gene retention typi-
cal of Group 2 (Figure 1b). We speculate that the discov-
ery of extant cyanobacteria that contain a men operon
derived from Chlorobi/Gammaproteobacteria would
potentially provide an useful piece of evidence to identify
the lineage most closely related to the plastid ancestor.

Materials and methods
Sequence data mining
The genes for MQ and PhQ biosynthesis have previously
been characterized in E. coli and in Synechocystis sp. PCC
6803 [19,20], as has PHYLLO (with the functional
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menDCH modules), the menF genes (ICS), menG, menA,
and menE in Arabidopsis [18,21-23]. The product of all
these genes served as queries to find by BLASTP [40]
searches the corresponding homologs in other prokaryo-
tes and eukaryotes. For the collection of proteins and ini-
tial analysis of the structure of men gene clusters, about
120 taxa of menaquinone-using bacteria were selected
among the major prokaryotic phyla. Only a fraction of
taxa from this original data set was used for phylogenetic
analysis. All retrieved Men proteins were authenticated by
the presence of the corresponding coding genes within
clusters of men genes, as well by comparisons to aligned
modules of Men proteins in the Conserved Domain Data-
base [41]. This approach allowed us to identify the major-
ity of Men homologs. The use of positive cases also made
it possible to deduce cut-offs of the e-value for each family
of proteins to identify homolgs by BLASTP in some taxa
where Men proteins were not encoded within men gene
clusters.

The eukaryotic proteins from Arabidopsis and rice and the
Cyanidiales Cyanidium caldarium and Cyanidioschyzon
merolae were obtained from GenBank [42]. The nucleotide
sequence of part of the men gene cluster of Galdieria
maxima, containing menB, menF, and menD, was deter-
mined in our laboratory (GenBank accession number
EU281345). The remaining plant sequences of Phys-
comitrella patens ssp. patens, Populus trichocarpa, the green
algae Chlamydomonas reinhardtii, Ostreococcus lucimarinus,
and Ostreococcus tauri, and the diatom algae Phaeodactylum
tricornutum, and Thalassiosira pseudonana were retrieved
from the DOE joint genome institute database [43].
PHYLLO was identified in all these organisms with varia-
tions in its modular structure. In green algae and the moss
Physcomitrella patens PHYLLO displays the architecture
menFDCH. In higher plants the menF enzymatic function
is provided by an individual gene (isochorismate synthase,
ICS) that originated via duplication of the menF module
of PHYLLO early in vascular plant evolution [18]. This
event was followed by fission of the 3' region of the
PHYLLO menF module. As a consequence, the architecture
of PHYLLO (menF5'DCH) in higher plants presents a
short inactive menF module that is homologous to the 5'
region of menF genes [18]. In diatoms the menC module
of the PHYLLO follows menH. In addition, the 3' module
encoding a domain of unknown function (duf,
COG5637) is also combined to the preceding men com-
ponents, resulting in the pentamodular fusion men FDHC
duf.

All of the retrieved sequences were manually annotated
with help of the comparative prediction algorithms
FGENESH+ [44] and Wise2 [45] combined with multiple
alignments with known genes of plant and algae. This
approach permitted us to deduce exon-intron boundaries

with maximum confidence overcoming common errors
resulting from automated annotation pipelines.
Sequences were aligned using ClustalW [46] and manu-
ally edited. Only conserved regions of proteins that could
be unambiguously aligned were used to construct phylo-
genetic trees. The protein alignments with accession num-
bers are available from the Debashish Bhattacharya lab
web page [47].

Phylogenetic analysis
The phylogeny of the large alignment of MenFD was
inferred using MrBayes [48]. Metropoliscoupled Markov
chain Monte Carlo from a random starting tree was used
in this analysis with two independent runs (i.e., nrun = 2
command) and 1 cold and 3 heated chains. The Bayesian
analysis (aamodel = mixed; rates = invgamma) was run for
2 million generations with trees sampled every 100th gen-
eration. To increase the probability of chain convergence,
we sampled trees after the standard deviation values of the
two runs were < 0.05 to calculate the posterior probabili-
ties. The remaining phylogenies were discarded as burn-
in. Bootstrap support for nodes in the majority rule con-
sensus Bayesian tree was determined using maximum
likelihood (i.e., PHYML V2.4.3 [49]) and neighbor join-
ing (NJ; MEGA [50]). For the PHYML analysis the model
parameters were: model of amino acid substitution =
WAG (identified using ProtTest V1.3 [51] with "Fast" opti-
mization and a BIONJ tree); starting tree = NJ; gamma =
1.361; p-inv. = 0.073. For the MEGA analysis: model of
amino acid substitution = JTT; gamma = 0.84 (obtained
using ProtTest).

The MenH and MenA trees were also inferred using
MrBayes as described above. Nodal support was assessed
using PHYML bootstrap. The model parameters for these
analyses were as follows. MenH PHYML: model of amino
acid substitution = WAG (identified using ProtTest); start-
ing tree = NJ; gamma = 2.014; p-inv. = 0.067. MenA
PHYML: model of amino acid substitution = Blosum62
(identified using ProtTest); starting tree = NJ; Gamma =
1.591; p-inv. = 0.025. The MenC, MenB, MenE and MenG
trees were constructed using MrBayes with specific param-
eters for each tree as indicated (see Additional files 1, 2, 3,
4).

To address alternative hypotheses about the tree topolo-
gies, we generated a backbone phylogeny in each case that
was identical to the 'best' PHYML tree but excluded the
group of interest. Using this backbone tree, the group of
interest was then added individually using MacClade
V4.05 [52] to 20 alternative branches that spanned the
most likely placements of the clade. The site-by-site likeli-
hoods for the trees in this analysis were calculated using
the appropriate data set and model with TREEPUZZLE
(V5.2, 31) [53] and the default settings. The approxi-
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mately unbiased (AU-) test was then implemented using
CONSEL V0.1i [54] to assign the tree probabilities.

List of Abbreviations
AU-test: approximately unbiased test; BPP: Bayesian pos-
terior probability; EGT: endosymbiotic gene transfer;
HGT: horizontal gene transfer; ICS: isochorismate synthase;
MQ: menaquinone; NJ: neighbor joining; NJB: neighbor
joining bootstrap; PB: PHYML bootstrap; PhQ: phylloqui-
none.
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