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Abstract
Background: The metzincins are a large gene superfamily of proteases characterized by the
presence of a zinc protease domain, and include the ADAM, ADAMTS, BMP1/TLL, meprin and
MMP genes. Metzincins are involved in the proteolysis of a wide variety of proteins, including those
of the extracellular matrix. The metzincin gene superfamily comprises eighty proteins in the human
genome and ninety-three in the mouse. When and how the level of complexity apparent in the
vertebrate metzincin gene superfamily arose has not been determined in detail. Here we present
a comprehensive analysis of vertebrate metzincins using genes from both Ciona intestinalis and Danio
rerio to provide new insights into the complex evolution of this gene superfamily.

Results: We have identified 19 metzincin genes in the ciona genome and 83 in the zebrafish
genome. Phylogenetic analyses reveal that the expansion of the metzincin gene superfamily in
vertebrates has occurred predominantly by the simple duplication of pre-existing genes rather than
by the appearance and subsequent expansion of new metzincin subtypes (the only example of which
is the meprin gene family). Despite the number of zebrafish metzincin genes being relatively similar
to that of tetrapods (e.g. man and mouse), the pattern of gene retention and loss within these
lineages is markedly different. In addition, we have studied the evolution of the related TIMP gene
family and identify a single ciona and four zebrafish TIMP genes.

Conclusion: The complexity seen in the vertebrate metzincin gene families was mainly acquired
during vertebrate evolution. The metzincin gene repertoire in protostomes and invertebrate
deuterostomes has remained relatively stable. The expanded metzincin gene repertoire of extant
tetrapods, such as man, has resulted largely from duplication events associated with early
vertebrate evolution, prior to the sarcopterygian-actinopterygian split. The teleost repertoire of
metzincin genes in part parallels that of tetrapods but has been significantly modified, perhaps as a
consequence of a teleost-specific duplication event.
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Background
Extracellular matrix (ECM) components modulate cellu-
lar behaviour by creating influential cellular environ-
ments. The processing and turnover of ECM is integral to
providing the correct environment to support and direct
development, morphogenesis and tissue remodelling [1].
The metzincin proteases, mainly involved in proteolysis
of extracellular matrix proteins, are a gene superfamily
characterized by a protease domain with a HEXX-
HXXGXXH zinc-binding motif at the active site [2]. The
superfamily can be subdivided into four subfamilies
according to subtle differences in the catalytic site and the
presence of additional domains: matrixins (MMPs),
adamalysins (ADAM, ADAMTS and class III snake venom
proteins), astacins (BMP1/TLL proteins and meprins) and
bacterial serralysins (Fig. 1A). The focus of this study is to
investigate the evolutionary history of the vertebrate metz-
incin superfamily.

ADAM proteins consist of a prodomain, followed by met-
alloprotease, disintegrin, cysteine rich, EGF, transmem-
brane and cytoplasmic domains (Fig. 1B). Approximately
half of the ADAMs identified in mammals are believed to
be proteolytically active and many are thought to play
roles in adhesion [4]. Proteolytically active ADAMs are
membrane-bound enzymes that act as molecular switches
by cleaving and releasing proteins from the cell surface
through a process known as ectodomain shedding [3].
Produced as zymogens, cleavage by proprotein convertase
(e.g. furin) is required for activation of ADAMs [4]. ADAM
proteolysis acts upon a wide variety of growth factors,
cytokines and receptors and is implicated in various cell
behaviours such as angiogenesis, fertilization and neuro-
genesis [3]. For example, ADAM17 functions as a TNFα
converting enzyme [5], is required for the activation of
EGF receptor ligands such as TGFα [6] and plays a promi-
nent role in the activation of the Notch signaling pathway
[7]. The recent finding that ADAM22 acts as a receptor for
LGI1 in regulating synaptic transmission across the neuro-
nal membrane [8], suggest that ADAM proteins can
exhibit functions separate to that of proteolysis.

ADAMTS share the same domain structure of ADAM
genes, except that they lack the transmembrane and cyto-
plasmic domains, and in addition contain a large variable
ancillary region characterised by thrombospondin type 1
repeats (Fig. 1B) [9]. ADAMTS are secreted proteases
whose ancillary domains have been considered to deter-
mine substrate specificity, since the protease domains
alone appear to be unable to process native substrates
[10]. Synthesised as proproteins, the removal of the pro-
domain occurs in the secretory pathway through the
action of proprotein convertases [11]. The processing of
extracellular matrix molecules such as procollagens,
aggrecan and von Willebrand Factor by ADAMTS proteins

impacts on developmental processes such as angiogen-
esis, coagulation and connective tissue organisation, and
diseases such as arthritis and inflammation [11]. Included
within the ADAMTS family is a small group of ADAMTS-
like proteins that lack the metalloprotease and disin-
tegrin-like domains [12-14]. The ADAMTS-like proteins
have been proposed to play roles in regulating cell-matrix
interactions [14].

The BMP1 and tolloid-like genes consist of the zinc met-
alloprotease domain followed by CUB and calcium-bind-
ing EGF-like domains (Fig. 1B). In a similar manner to
that of the ADAM and ADAMTS genes, BMP1 is synthe-
sised with an N-terminal prodomain, which is cleaved by
proprotein convertases during protein maturation [15]. In
addition to their roles in the maturation of numerous
extracellular matrix proteins, such as fibrillar collagens,
small leucine rich proteoglycans and lysyl oxidase [16],
BMP/TLL genes play key roles in the activation of TGF-β-
like ligands and the cleavage of chordin [17]. BMP1/TLL
genes are widely expressed and have major developmental
roles in early embryogenesis [16].

Meprins are multidomain metalloproteases encoded by
two vertebrate genes, MEP1A and MEP1B. In addition to
the metalloprotease domain, the meprins also contain a
MAM (meprin A5 protein tyrosine phosphatase μ)
domain, a MATH (meprin and TRAF [tumour necrosis fac-
tor receptor associated factor] homology) domain and a
calcium-binding EGF-like domain at the C-terminus (Fig.
1B). Secreted as zymogens, meprins are activated by plas-
min [18] and trypsin in the intestine [19]. Highly
expressed in mammalian kidney and intestine, meprins
are capable of cleaving a wide variety of hormones [20] as
well as extracellular matrix proteins such as fibronectin,
laminin and collagen [21,22]. Meprins are also expressed
by leukocytes and are thought to be involved in cell
migration during immune responses [23].

The class III snake venoms, characterised as members of
the metzincin gene superfamily [2], have evolved in a lin-
eage specific manner distinct from the other vertebrate
metzincins and since their detailed phylogeny has been
previously determined [24] they will not be considered
further here.

Matrix metalloproteases (MMPs) consist of a propeptide,
the zinc metalloprotease domain, a linker or hinge region
and C-terminal hemopexin domains (Fig. 1B). MMPs are
classified in the basis of their substrate specificity and
include collagenases, gelatinases and stromelysins.
Secreted in a latent form, most MMPs are activated follow-
ing cleavage by extracellular proteases [25], some of which
being MMPs located at the cell surface known as mem-
brane-type MT-MMPs (MMPs14, 15, 16, 17, 24 and 25).
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The metzincin gene familyFigure 1
The metzincin gene family. A. Schematic representation of subdivisions within the Metzincin superfamily. B. Domain structure 
of generic metzincin genes. All ADAM, BMP/TLL, Meprin and TIMP genes have the same domain structure as that shown on 
the figure. * The ADAMTSL domain structure shown is ADAMTSL2. ADAMTS, ADAMTSL and MMMP genes have a variable 
C-terminal domain structure. The domain structures shown are ADAMTS10, ADAMTSL2 and MMP1.
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Indeed all MT-MMPs, except MMP17, can activate
proMMP2 [26]. The MMP proteins are involved in the
breakdown of extracellular matrix in normal physiologi-
cal processes such as embryonic development, tissue
remodelling and reproduction, as well as in disease proc-
esses such as arthritis and cancer [26].

TIMPs are the endogenous regulators of ADAM, ADAMTS
and MMP genes [26-28], and have been included in this
analysis due to this relationship with the metzincin fam-
ily. TIMPs have a single NTR (netrin) domain structure
consisting of a 125 amino acid N-terminus and a smaller
C-terminal region (Fig. 1B) forming a "wedge-like" struc-
ture [26]. The inhibition of MMPs by TIMP proteins
occurs when the reactive ridge of the TIMP slots into the
active site of the MMP [26]. The expression of TIMP genes
is regulated to maintain a balance of tissue remodelling
and degradation in the extracellular matrix, disruption of
which can lead to a variety of diseases such as cancer and
arthritis [29]. TIMP function has also been implicated in
the promotion of cell proliferation in a variety of cell types
[30,31]. Mutations in TIMP3 are associated with Sorsby's
fundus dystrophy, which results in early onset macular
degeneration [32].

The sequencing of the genome of the ascidian Ciona intes-
tinalis [33], a urochordate and one of the closest inverte-
brate relatives of vertebrates, provides a unique
opportunity to gain insight into the complete set of metz-
incins available in chordates prior to the large-scale or
whole genome duplication events that many believe were
associated with the early stages of vertebrate evolution
[34-36]. The zebrafish (Danio rerio) genome has also been
investigated since comparative studies provide insight
into the likely timing of duplications occurring during
vertebrate evolution. Gene duplications shared by fish
and man are likely to have occurred prior to the tetrapod/
teleost divergence, whereas duplications unique to one of
the lineages are most likely to have occurred after their
divergence approximately 350 million years ago [37]. In
addition, the identification of zebrafish metzincin ortho-
logues may provide insights into the putative third whole
genome duplication event, proposed to have occurred
within the actinopterygian lineage [37].

The metzincin gene superfamily comprises eighty proteins
in the human genome and ninety-three in the mouse.
When and how the level of complexity apparent in the
vertebrate metzincin superfamily arose has not been
determined in detail. We have previously identified Ciona
intestinalis orthologues for the ADAMTS and BMP1/Tol-
loid-like gene families [38,39]. Here we present a compre-
hensive analysis of the vertebrate metzincin gene
superfamily using genes from both Ciona intestinalis and

Danio rerio to provide new insights into the complex evo-
lution of this gene superfamily.

Results
Identification of metzincin genes in the ciona and zebrafish 
genomes
A total of nineteen genes encoding metzincins were identi-
fied in the ciona genome (Table 1 & Additional File 1 & 2)
comprising four ADAM, seven MMP together with the pre-
viously reported seven ADAMTS and single BMP1/tolloid
gene [38,39]. Meprin orthologues were not found in the
ciona genome. A single ciona TIMP orthologue was iden-
tified (Table 1).

In contrast, eighty-three metzincin genes were identified
in the zebrafish genome (Table 2 & Additional File 3).
These consisted of twenty-two ADAM, twenty-seven
ADAMTS, four BMP1/tolloid, four meprin and twenty-six
MMP orthologues (Table 2). In addition, four zebrafish
TIMP orthologues were identified (Table 2).

The majority of the identified gene sequences were anno-
tated but many were fragmented. Where possible, these
sequences were further refined by cross-reference to EST
databases and direct searching, and analysis of flanking
genomic sequence; amended sequences used in the fol-
lowing analyses are reported in full in Additional Files 2
(ciona) and 3 (zebrafish) respectively.

The sequences of the specified ciona and zebrafish genes
were aligned with the complete set of family members in
the human genome. Where appropriate, sequences from
other phyla were included (all accession numbers are
available in Additional File 1). The relationships of the
ciona genes and the zebrafish genes with their human
orthologues are shown in Tables 1 and 2 respectively. The
detailed phylogenetic relationships of all gene family
members studied are depicted in Figures 2, 3, 4.

ADAM gene family evolution
Due to the fragmented nature of some zebrafish ADAM
genes, a gap-stripped phylogenetic analysis could not be
performed on the full ADAM family dataset. Therefore,
based on an initial Neighbor Joining analysis (Fig. S1,
Additional file 4), the ADAM family was divided into
three sub-groups (A, B & C) and phylogenetic analyses
performed independently on each. The lower levels of
sequence divergence within the subgroups allowed for
more reliable alignment reconstruction. The dotted lines
in Figure 2 show the predicted relationships between the
sub-groups based upon the mid-point rooting in the
guide tree (Fig. S1, Additional file 4). Furthermore, for the
ADAM analysis, it was essential to include mouse ortho-
logues since there are several significant differences
between the mouse and human ADAM complement of
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Table 1: Metzincin genes in the Ciona intestinalis genome and their direct human orthologues.

Ciona gene Human orthologue Human Locus Figure

ADAM

ADAMa ADAM17 2p25 2

ADAMb ADAM10 15q22 2

ADAMc1 & cc2 ADAM2 8p11.2 2

ADAM7 8p21.2* 2

ADAM8 10q26.3* 2

ADAM9 8p11.23 2

ADAM11 17q21.3* 2

ADAM12 10q26.3* 2

ADAM15 1q21.3* 2

ADAM18 8p11.22 2

ADAM19 5q32-q33* 2

ADAM22 7q21* 2

ADAM23 2q33* 2

ADAM28 8p21.2* 2

ADAM32 8p11.23 2

ADAM33 20p13* 2

ADAMDEC1 8p21.2* 2

ADAMTS

ADAMTSa ADAMTS2 5qter 3A

ADAMTS3 4q21.1* 3A

ADAMTS14 10q2* 3A

ADAMTSb ADAMTS16 5p35 3A

ADAMTS18 16q34 3A

ADAMTSc ADAMTS7 15q24.2 3A

ADAMTS12 5q35 3A

ADAMTSd ADAMTS9 3p14.3-p14.2 3A

ADAMTS20 12q12 3A

ADAMTSe ADAMTS6 5pter-qter* 3A

ADAMTS10 19p13.1* 3A

ADAMTSf ADAMTS1 21q21.2* 3A

ADAMTS4 1q21-q23* 3A

ADAMTS5 21q21.3* 3A
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ADAMTS8 11q25* 3A

ADAMTS15 11q25* 3A

ADAMTSg Papilin 14q24.2 3B

ADAMTSL1 9p22.1* 3B

ADAMTSL2 9q34.2 3B

ADAMTSL3 15q25* 3B

ADAMTSL4 1q21.2 3B

ADAMTSL5 19p13.3 3B

BMP1/TLL

BMP1/TLL BMP-1 8p21 3C

Tolloid-like 1 4q32-q33 3C

Tolloid-like 2 10q23-q24 3C

MMP

MMPa1, a2 & MMPa3 MMP19 12q14 4

MMP26 11p15 4

MMP28 17q11-q21.1 4

MMPb MMP21 10q26.2 4

MMPc MMP17 12q24.3 4

MMP25 16p13.3 4

MMPL1 16p13.3 4

MMPd MMP14 14q11-q12* 4

MMP15 16q13-q21* 4

MMP16 8q21* 4

MMP24 20q11.2* 4

MMPe MMP2 16q13-q21* 4

MMP7 11q21-q22 4

MMP9 20q11.2-q13.1* 4

MMP20 11q22.3 4

TIMP

TIMP TIMP1 Xp11.3-p11.23* 3E

TIMP2 17q25* 3E

TIMP3 22q12.3* 3E

TIMP4 3p25* 3E

Ciona genes listed with their direct human orthologues, produced from the associated phylogenetic analysis listed. * indicates that related genes 
within the sub-clade are located in paralogous regions of the human genome.

Table 1: Metzincin genes in the Ciona intestinalis genome and their direct human orthologues. (Continued)
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Table 2: Metzincin genes in the Danio rerio genome and their direct ciona and human orthologues.

Zebrafish gene Human orthologue Figure

ADAM
A clade
ADAM10a ADAM10 2 & S1
ADAM10b ADAM10 2 & S1
ADAM17a ADAM17 2 & S1
ADAM17b ADAM17 2 & S1
B clade
ADAM8a ADAM8 2& S2
ADAM8b ADAM8 2 & S2
ADAM9a ADAM9 S2
ADAM11 ADAM11 2 & S2
ADAM12a ADAM12 2 & S2
ADAM12b a ADAM12 2  S2
ADAM12c a ADAM12 2 & S2
ADAM15 ADAM15 2 & S2
ADAM19a ADAM19 2 & S2
ADAM19b a ADAM19 S2
ADAM22 ADAM22 2 & S2
ADAM23a ADAM23 2 & S2
ADAM23b ADAM23 2 & S2
ADAM28 ADAM28 2 & S2
ADAMLa 2 & S2
ADAMLb b 2
ADAMLc b 2
ADAMLd b 2
ADAMTS
ADAMTS1 ADAMTS1 3A
ADAMTS2/3 ADAMTS2 and ADAMTS3 3A
ADAMTS5 ADAMTS5 3A
ADAMTS8a ADAMTS8 3A
ADAMTS8b ADAMTS8 3A
ADAMTS8c ADAMTS8 3A
ADAMTS8d ADAMTS8 3A
ADAMTS9 ADAMTS9 3A
ADAMTS12 ADAMTS12 3A
ADAMTS13 ADAMTS13 3A
ADAMTS15a ADAMTS15 3A
ADAMTS15b ADAMTS15 3A
ADAMTS15c ADAMTS15 3A
ADAMTS18 ADAMTS18 3A
ADAMTSL2a ADAMTSL2 3B
ADAMTSL2b ADAMTSL2 3B
ADAMTSL2c ADAMTSL2 3B
ADAMTSL4 ADAMTSL4 3B
ADAMTSL5 ADAMTSL5 3B
PAPLNa Papilin 3B
PAPLNb Papilin 3B
ADAMTSLa 3B
ADAMTSLb 3B
ADAMTSLc 3B
ADAMTSLd 3B
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ADAMTSLe 3B
ADAMTSLf 3B
BMP1/TLL
BMP1a BMP1 3C
BMP1b BMP1 3C
BMP1c BMP1 3C
TLL1 TLL1 3C
Meprin
MEP1Aa MEP1A 3D
MEP1Ab MEP1A 3D
MEP1Ac MEP1A 3D
MEP1B MEP1B 3D
MMP
B clade
MMP11a MMP11 4 & S5
MMP11b MMP11 4 & S5
MMP23a MMP23A & B 4 & S5
MMP23b MMP23A & B S5
C clade
MMP17 MMP17 4 & S6
MMPLa 4 & S6
MMPLb 4 & S6
MMPLc 4 & S6
MMPLd 4 & S6
D clade
MMPLe MMP1/3/8/10/12/13/27 4 & S7
E clade
MMP14a MMP14 4 & S8
MMP14b MMP14 4 & S8
MMP14c MMP14 4 & S8
MMP15a MMP15 4 & S8
MMP15b MMP15 4 & S8
MMP15c MMP15 4 & S8
MMP16a MMP16 4 & S8
MMP16b MMP16 4 & S8
MMP24a MMP24 4 & S8
MMP24b MMP24 4 & S8
F clade
MMP2 MMP2 4 & S9
MMP7 MMP7 S9
MMP9 MMP9 4 & S9
MMPLf 4 & S9
MMPLg 4 & S9
MMPLh 4 & S9
TIMP
TIMP2a TIMP2 3E
TIMP2b TIMP2 3E
TIMP2c TIMP2 3E
TIMP2d TIMP2 3E

Zebrafish genes listed with their direct ciona and human orthologues, produced from the associated phylogenetic analysis listed. a very short 
sequences which on limited phylogenetic analysis clearly grouped with the orthologues indicated, however insufficient data to include in Figure 3. b 

could not be accurately grouped into sub-clades for subsequent analysis following production of guide tree (Fig. S1). Supplementary Figures are 
located in additional file 4.

Table 2: Metzincin genes in the Danio rerio genome and their direct ciona and human orthologues. (Continued)
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Phylogenetic relationships of the ADAM gene familyFigure 2
Phylogenetic relationships of the ADAM gene family. The ADAM gene family was separated into three sub-analyses, indicated 
A, B and C, based upon the clades produced and independent phylogenetic analyses performed. The trees shown were 
inferred by Neighbor Joining from a gapped alignment. The values on the tree nodes are neighbor joining percentage bootstrap 
values (black), maximum parsimony bootstrap values (blue) and Bayesian clade credibility values (brown). Nodes also present 
in the tree generated by Maximum Likelihood are indicated (*). The trees are mid-point rooted. The scale bar corresponds to 
0.1 amino acid replacements per site (horizontal axis). Where both mouse and human orthologues are present only the human 
gene is shown. † There is no mouse ADAM20. Ψ D. rerio ADAM12b and ADAM12c group with ADAM12a (Fig. S3). Ω 
D.rerio ADAML genes based on location in Fig. S1. The full phylogenetic guide tree is available in Fig. S1. The full phylogenetic 
trees for the A, B and C subgroups, containing all mouse ADAM orthologues, are presented in Figs. S2-S4. Accession numbers 
for used in the analyses can be obtained from additional file 1. Further analysis on individual sub-fragments of the B-clade, indi-
cated in Fig. S3, found zebrafish ADAM19b (LOC571252) to group with H. sapiens ADAM19 at α; zebrafish ADAM12b 
(LOC558872) and ADAM12c (LOC561244) to group with D. rerio ADAM12A at β and zebrafish ADAM9 (zgc101824) at χ.

H.sapiens ADAM11

D. rerio ADAM11

H.sapiens ADAM22
D. rerio ADAM22

H.sapiens ADAM23

D. rerio ADAM23b
D. rerio ADAM23a

D. rerio ADAMLa

H.sapiens ADAM32

H.sapiens ADAM18

M.musculus ADAM5

M.musculus ADAM3

H.sapiens ADAM2

H.sapiens ADAM7

H.sapiens ADAM-DEC1

H.sapiens ADAM28

D. rerio ADAM28

H.sapiens ADAM15

D. rerio ADAM15

H.sapiens ADAM9

D. rerio ADAM8b

D. rerio ADAM8a

H.sapiens ADAM8

H.sapiens ADAM12

D. rerio ADAM12a

H.sapiens ADAM19

D. rerio ADAM19a

H.sapiens ADAM33

D.melanogaster mmd

C.intestinalis ADAMc2

C.intestinalis ADAMc1

D.melanogaster Neu3

92

100100

10099

96100
77

73
98

74

100100

94

*

99

97

9510080

M.musculus ADAM25

M.musculus ADAM40

M.musculus ADAM39

M.musculus ADAM38

M.musculus ADAM24

H.sapiens ADAM21

H.sapiens ADAM20 †

H.sapiens ADAM29

M.musculus ADAM4

M.musculus ADAM6b

M.musculus ADAM6

H.sapiens ADAM30

M.musculus ADAM1b

M.musculus ADAM1a

0.1

10099

98 100

79

100 99

10099100

100

100

9798

100

74

10099 99

99

80

94 99 98

M.musculus ADAM26b

M.musculus ADAM26

M.musculus ADAM36

M.musculus ADAM37

M.musculus ADAM34

100 9996

10099 99

10099 99

M.musculus ADAM4b

*

*

*

*

*

*

*

100 99

H.sapiens ADAM10

D.melanogaster kuz

C.intestinalis ADAMb
D. rerio ADAM10a

H.sapiens ADAM17

D.melanogaster TACE

C.intestinalis ADAMa

D. rerio ADAM10b

D. rerio ADAM17a

D. rerio ADAM17b

D.melanogaster kul

100 99

7710098

*100 100100

*

76

*

8799

*

9910097

8210099

*

*

*

*

*

A

B

C

¥



BMC Evolutionary Biology 2007, 7:63 http://www.biomedcentral.com/1471-2148/7/63
genes (Fig. 2). Although included in the phylogenetic
analyses (Fig. S2-S4 in Additional file 4), for simplicity
only mouse genes that are not direct orthologues of
human genes are shown in Figure 2. It should therefore be
noted that all human genes depicted in Figure 2 (with the
sole exception of ADAM20) have a direct mouse ortho-
logue.

The four ADAM genes identified in the ciona genome
(Table 1) and the twenty-two ADAM genes in zebrafish
(Table 2) clustered into the A and B sub-groups (Fig. 2).
The A sub-group consists of two well-defined clades,
where drosophila sequences (TACE and kul/kuz respec-
tively) are basal (an outgroup to the clades), followed by

single ciona (ADAM a & b respectively) and human
sequences (ADAM 17 and 10 respectively), and dupli-
cated zebrafish genes (ADAM 17a & b and ADAM 10a & b
respectively). All sequences occurred in the expected rela-
tionships based on their animal phyla, class and species
(Fig. 2A).

The remaining two ciona (ADAMc1 & c2) and drosophila
(Neu3 & mmd) genes form the basal part of the ADAM B-
subgroup (Table 1, Figs. 2 and S3). The remainder of the
B sub-grouping is composed of an expanded set of verte-
brate genes. There are single zebrafish orthologues for five
human ADAM genes (ADAM9, ADAM11, ADAM15,
ADAM22 and ADAM28), two zebrafish orthologues for

Phylogenetic relationships of metzincin gene familiesFigure 3
Phylogenetic relationships of metzincin gene families. A. ADAMTS, B. ADAMTS like, C. BMP1/Tolloid-like, D. Meprin and E. 
TIMP gene families. The trees summarise the phylogenetic analysis. The trees shown were inferred by Neighbor Joining. The 
values on the tree nodes are Neighbor Joining percentage bootstrap values (black), maximum parsimony bootstrap values 
(blue) and Bayesian clade credibility values (brown). Nodes also present in the tree generated by Maximum Likelihood are indi-
cated (*). The trees are rooted on the protostome lineage. The scale bars correspond to the number of amino acid replace-
ments per site (horizontal axis). Accession numbers for used in the analyses can be obtained from additional file 1.
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Phylogenetic relationships of the MMP gene familyFigure 4
Phylogenetic relationships of the MMP gene family. The MMP gene family was separated into six sub-analyses, indicated A – F, 
based upon the clades produced and independent phylogenetic analyses performed. The trees shown were inferred by Neigh-
bor Joining from a gapped alignment. The values on the tree nodes are neighbor joining percentage bootstrap values (black), 
maximum parsimony bootstrap values (blue) and Bayesian clade credibility values (brown). Nodes also present in the tree gen-
erated by Maximum Likelihood are indicated (*). The trees are mid-point rooted. The scale bar corresponds to 0.05 amino 
acid replacements per site (horizontal axis). The MMP gene family was separated into six sub-analyses, indicated A to F, based 
upon the clades produced and independent phylogenetic analyses performed. The full phylogenetic guide tree is available in Fig. 
S5. Accession numbers for used in the analyses can be obtained from additional file 1.
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ADAM8, ADAM19 and ADAM23, and three zebrafish
ADAM12 orthologues (Table 2, Ψ in Fig. 2; Fig. S3). Four
zebrafish genes (ADAMLa, b, c & d) clustered weakly in
the B clade on the initial phylogenetic analysis (Ω in Fig.
2; Fig. S1), with no statistical support, but appear to be lin-
eage specific in that they have no direct human ortho-
logue (Table 2, Fig. S1). The zebrafish ADAMLb-d gene
sequences were relatively short (ADAMLb 449-, ADAMLc
282- and ADAMLd 215-amino acids respectively) and
highly divergent and so were excluded from the more
detailed B sub-grouping analyses (hence their omission
from Fig. 2). In addition, there is no significant statistical
support for the positioning of the zebrafish ADAMLa gene
shown in Figure 2.

The ADAM C sub-grouping consists entirely of human
and mouse sequences. The absence of basal invertebrate
or tetrapod orthologues within the ADAM C sub-group
infers that this gene expansion occurred on the tetrapod
lineage (Fig. 2). However, it is possible that invertebrate
orthologues to the ADAM C sub-group have been lost.
Further genome sequencing may provide insight into this
gene family.

ADAMTS gene family evolution
We have previously described the characteristics of the six
ADAMTS and a single ADAMTS-like (ADAMTSL) gene
found in the ciona genome [38]. Their exact relationships
with human ADAMTS genes are defined in Table 1 and
Figures 3A &3B.

A total of fourteen ADAMTS and thirteen ADAMTS-like
(ADAMTSL)/papilin-related genes were identified in the
zebrafish genome (Table 2). Single zebrafish orthologues
were identified for six human ADAMTS genes (ADAMTS1,
ADAMTS5, ADAMTS9, ADAMTS12, ADAMTS13 &
ADAMTS18; Table 2, Fig. 3A). In addition, a single
zebrafish gene (ADAMTS2/3) was orthologous to human
ADAMTS2 and ADAMTS3 (Table 2 and Fig. 3A). Human
ADAMTS15 and ADAMTS8 have three and four zebrafish
orthologues respectively (Table 2 and Fig. 3A).

A single C. elegans and ciona gene roots the ADAMTSL
family, which lacks the proteolytic domain that typifies
the metzincin superfamily (Table 1 and Fig. 3B). Human
ADAMTSL4 and 5 each have a single zebrafish orthologue
whereas human papilin and ADAMTSL2 have two and
three orthologues respectively (Table 2, Figure 3B). Six
zebrafish ADAMTSL genes, ADAMTSLa – ADAMTSLf have
no direct human orthologues, however the resolution in
this part of the phylogeny is weak (Fig. 3B).

BMP1/tolloid gene family evolution
We have previously reported that a single ciona gene is
orthologous to the three human BMP1/tolloid (TLL)

genes (Table 1; [39]). Four zebrafish BMP1/TLL genes
were identified in this study (Table 2). Phylogenetic anal-
yses reveal that three of the zebrafish genes (BMP1a, b &
c) are orthologous to human BMP1 and the remaining
zebrafish gene (TLL1) groups with human TLL1 (Table 2,
Fig. 3C).

Meprin gene family evolution
Ciona does not appear to contain a meprin orthologue
whereas four were found in the zebrafish genome (Table
2). Phylogenetic analyses reveal that three of the zebrafish
genes are orthologous to human MEP1A and the remain-
ing zebrafish gene is the orthologue of MEP1B (Table 2
and Fig. 3D).

MMP gene family evolution
Due to the fragmented nature of some zebrafish MMP
genes, a gap-stripped phylogenetic analysis could not be
performed on the whole dataset. In a similar manner to
that of the ADAM genes, the MMP gene family was there-
fore partitioned into six sub-groups based on an initial
Neighbor Joining analysis (Fig. S5, Additional file 4).
Each sub-grouping was analysed separately. The dotted
lines in Figure 4 represents the individual sub-group posi-
tions based on the guide tree (Fig. S5, Additional file 4).
However, the relationships among the deep lineages (sub-
groups) were not resolved and thus Figure 4 is depicted as
an unresolved polytomy.

Seven MMP genes were identified in the ciona genome
(Table 1) whereas twenty-six MMPs were found in the
zebrafish (Table 2).

The A sub-grouping (Fig. 4) contains three of the ciona
genes (MMPa1-3) that are basal to a cluster of related
human genes (MMP19, 26 & 28). There are no zebrafish
orthologues associated with these genes.

The B sub-grouping consists of three sub-clades where the
drosophila MMP2 gene forms an outgroup (Fig. 4). The
first sub-clade consists of human MMP11 with duplicated
zebrafish genes (MMP11a & b) but no ciona orthologue.
The second sub-clade includes human MMP21 and its
ciona orthologue (MMPb) and the third contains two
zebrafish MMP23(a & b) genes and the very recently
duplicated human MMP23(A & B) genes (Fig. 4).

The ciona MMPc gene is basal to the vertebrate genes of
the MMP C sub-group. The position of two related
zebrafish genes (MMPLa & b) that have no direct human
orthologues is not well defined (Fig. 4). The remaining
genes appear closely related and include human MMP17,
MMP25 and MMPL1, zebrafish MMP17 and a recently
duplicated pair of zebrafish paralogues (MMPLc & d).
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A single zebrafish gene, MMPLe, clusters with the seven
human genes (MMP1, 3, 8, 10, 12, 13 & 27) within the
MMP D sub-group although there is no strong support for
the positioning of any of the genes apart from the pairing
of the human MMPs 1 with 8 and 3 with 10 (Fig. 4).

Ciona MMPd is the basal orthologue to the E sub-group-
ing of vertebrate MMP genes (Fig. 4). The rest of the
grouping contains four human MMP genes, each with
multiple zebrafish orthologues. Human MMP16 and 24
have two zebrafish orthologues each whereas both human
MMP14 and 15 have three each (Table 2 and Fig. 4).

Ciona MMPe is orthologous to the vertebrate MMP F sub-
group. Single zebrafish orthologues were identified for
human MMP2, MMP9 and MMP7 in the F sub-grouping
(Table 2 and Fig. 4). In addition, the sub-grouping con-
tains three zebrafish genes (MMPLf-h) that do not have
direct human orthologues (Table 2 and Fig. 4).

TIMP gene family evolution
The single TIMP identified in the ciona genome is orthol-
ogous to the four human TIMP genes and forms the out-
group to the vertebrate TIMP family (Table 1 and Fig. 3E).
Four TIMP genes were identified in the zebrafish genome
(Table 2 and Fig. 3E), all of which are orthologues of
human TIMP2. One of the zebrafish genes, (TIMP2d), has
a duplicated domain structure. The two domains were
split up for phylogenetic analysis – TIMP2d(a) and
TIMP2d(b) with the C-terminal TIMP2d(b) domain hav-
ing a sequence that is very divergent in comparison with
the other zebrafish sequences (Fig. 3E).

Mechanisms for metzincin gene family evolution
The 19 metzincin genes identified in the ciona genome
(Table 1) cluster into 16 well-supported clades where the
ciona gene(s) are orthologous to one or more vertebrate
genes. Gene duplications specific to the ciona lineage
(ADAMc1/2 and MMPa1/2/3) were exhibited by two of
these clades which otherwise contained a single ciona
gene. The sixteen clades include a total of fifty-nine
human genes. Three of these clades, containing human
ADAM10, ADAM17 (Fig. 2) and MMP21 (Fig. 4), had not
amplified on the vertebrate lineage and maintained a
ciona to human gene ratio of 1:1. The remaining 13 clades
contained two or more paralogous human genes, that is,
genes that have amplified up from a common progenitor
during vertebrate evolution (Fig. 2, 3). In seven (54%) of
these 13 clades, two or more duplicated human genes
(indicated by * in Table 1) were found to be in paralogous
regions of the human genome indicating that the events
causing these specific gene amplifications were presuma-
bly large scale and less likely to be the result of simple tan-
dem gene duplication alone. Clades where all human
members are present in paralogous loci include

ADAMTSa, ADAMTSe, ADAMTSf and MMPd (Table 1).
An equivalent analysis in zebrafish genes must await the
completion of chromosomal locus assignment for genes
across the genome.

It is noteworthy that within the ADAM B sub-group there
are eight areas of the human genome showing some
degree of paralogy to each other. The ADAM B sub-group
arose in a complex fashion and appears to have involved
both large-scale duplication events and gene loss.

In addition to large-scale duplications suggested by the
location of related genes in paralogous regions of the ver-
tebrate (human) genome, tandem duplication has also
characterised the metzincin gene expansion in both the
tetrapod and teleost lineages. For instance, all the human
orthologues in the MMP D sub-group are located on
11q22-24 (Additional File 1) and are rooted by a single
zebrafish gene, (MMPLe; Fig. 4) suggesting that the expan-
sion apparent in the human gene repertoire occurred by
tandem duplication after divergence of the tetrapod and
teleost lineages. The zebrafish MMP14b and MMP14c
genes share a very high sequence identity and appear to
have evolved from a recent intra-chromosomal duplica-
tion of seventeen genes on chromosome two (Fig. S6 in
Additional file 4). Recent duplications of other zebrafish
metzincins (e.g. ADAMTS15b and c, ADAMTSLa and b,
MEP1Aa and b – Fig. 3; and MMP15a and b – Fig. 4) are
apparent based on the high degree of sequence identity.

TIMP gene evolution
The single ciona gene is the orthologue of all four human
TIMP genes (Fig. 3E) which, as reported previously, are all
located in paralogous regions of the human genome
within the intron 5 of paralogous synapsin genes (Table 1
and Additional File 1, [40,41]). This genomic context,
which has previously been reported for drosophila and
man [42] is conserved in the ciona TIMP and confirmed
for one of the zebrafish orthologues, TIMP2d (data not
shown).

Discussion
Metzincin family evolution
1. ADAM
Members of the ADAM gene family exhibit complex evo-
lutionary relationships (Fig. 2). The two clades within
ADAM A sub-group, ADAM10 and ADAM17, both show
the expected relationship of genes based on phyla and
class, and exhibit duplications within the teleost lineage.
ADAM10 and ADAM17 are probably the most character-
ized of all the ADAM proteases. They are known to play
key roles both in activation of EGFR ligands, cross-talk
between these ligands and G protein coupled receptors [3]
and in early development due to their roles in shedding
TGFα [43] and the Notch ligand Delta [44].
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It is apparent that much of the ADAM B sub-group
evolved from large-scale duplications early in vertebrate
evolution, as the majority of human genes have direct
zebrafish orthologues, and that subsequent differential
gene loss occurred to produce the eight paralogous
regions present in the human genome (Fig. 2). Indeed,
many of these regions contain tandemly duplicated
ADAM genes further complicating the evolutionary his-
tory of this family. The extent and nature of the amplifica-
tion within the ADAM B sub-group suggests that these
genes played important roles in the early evolution of ver-
tebrates as opposed to the subsequent divergence of tele-
ost and tetrapods. The fact that a relatively large number
of vertebrate members of the ADAM B sub-group have
been retained following duplication suggests that these
genes have an increased propensity to neo- and/or sub-
functionalize. This propensity may be reflection of these
proteases function in shedding ectodomains or alterna-
tively, may be indicative of highly adaptable transcrip-
tional control within this sub-group of ADAM genes. The
ADAM B sub-group also reveals a tetrapod-specific expan-
sion of five genes (ADAM2, 3, 5, 18 and 32) that play roles
in fertility; ADAM2 and 3 are involved in mammalian fer-
tilization [45], ADAM5 is expressed in mouse testis [46],
and ADAM32 has been implicated in sperm-egg fusion
[47]. The highly specific function of these genes in rela-
tion to mammalian biology infers that they evolved more
recently during tetrapod evolution. Indeed all of these
genes (including the human ADAM3 and ADAM5 pseu-
dogenes) are located at chromosome 8p11.22-23, infer-
ring that this group evolved by tandem duplication and
that the pseudogenization of human ADAM3 and
ADAM5 [48,49] occurred after the divergence of the
rodent and primate lineages.

The ADAM C sub-group contains 4 human and 19 murine
genes (Fig. 2). It is apparent that this family has evolved in
the tetrapod lineage by both gene loss in the human
genome (ADAM1, 3, 4a, 4b, 5, 6 and 25 being pseudo-
genes – data not shown) and duplications along the
rodent lineage. It has previously been hypothesised that
the mutations leading to these genes becoming pseudo-
genes might have contributed to changes in human phys-
iology by disruption of specific processes related to
fecundity [50]. Thus evidence that the majority of ADAM
C sub-group genes are involved in spermatogenesis and
fertilization, are predominantly expressed in the testis
[51], and that reproductive genes evolve at a faster rate
than other genes [52] could explain the high levels of gene
amplification and sequence divergence apparent within
this clade (Fig. 2).

2. ADAMTS
We have previously concluded, based on the phylogeny of
the human ADAMTS genes, that the majority of the verte-

brate ADAMTS family probably evolved from the large-
scale duplication events associated with early vertebrate
evolution [38]. This conclusion is based on the observa-
tion that many of the human ADAMTS genes clustering
into clades (Fig. 3A) are found in paralogous regions of
the human genome that are the result of genome or large
scale duplication events [40]. These same genome dupli-
cation events that occurred during early vertebrate evolu-
tion are also thought to have caused the expansion in the
numbers of genes encoding extracellular matrix proteins
[1] – the substrates for the ADAMTS proteases. Thus,
genome or large-scale duplications can result in step
increases in complexity because of the co-ordinated
amplification and subsequent retention of functionally
related genes such as growth factors and their receptors or
proteases and their substrates. It is therefore surprising
that most of the identified ADAMTS clades (Fig. 3A) con-
tain only one zebrafish orthologue since this infers that,
after divergence, the teleost lineage has lost most of the
duplicated ADAMTS genes that have been retained in the
tetrapod lineage. From our data we infer that the teleost
(zebrafish) genome contains at least as many extracellular
matrix genes as the tetrapod (human) genome. For
instance, the teleost lineage actually contains duplicates of
many of the fibrillar collagen genes found in land verte-
brates [56] and yet the zebrafish has retained only one
(ADAMTS2/3) of the three N-proteinases conserved on
the tetrapod lineage (Fig. 3A). The only exception is the
'hyalectin-cleaving' ADAMTS clade (rooted by ciona
ADAMTSf – Fig. 3A[12]) where zebrafish paralogues of
most of human ADAMTS genes are not only retained but,
in several cases, duplicated on the fish lineage. Why after
divergence, the teleost lineage considerably simplified its
repertoire of ADAMTS genes (with the exception of the
hyalectin-cleaving proteases) whereas on the tetrapod lin-
eage the genes were retained, is not apparent but, these
differences presumably contributed to the evolutionary
divergence of the two superclasses.

In contrast to the ADAMTS gene family, the number and
phylogenetic relationships of the zebrafish ADAMTS-like
genes (that lack the protease domain characteristic of the
metzincin superfamily) infers a larger expansion within
the teleost (13 genes) than tetrapod lineage (6 genes – Fig.
3B). The fish-specific component of this amplification
probably arose by a combination of both genome dupli-
cation [39] and subsequent tandem duplications (Fig.
3B).

3. BMP1/TLL
We have previously demonstrated that the vertebrate
BMP1/TLL family amplified from a single progenitor gene
present in the early chordates [39]. Whilst the zebrafish
and human contain relatively similar numbers of BMP1/
TLL orthologues (four and three respectively), the distri-
Page 14 of 20
(page number not for citation purposes)



BMC Evolutionary Biology 2007, 7:63 http://www.biomedcentral.com/1471-2148/7/63
bution of these orthologues is markedly different (Fig.
3C). The phylogeny suggests that the teleost lineage has
retained and subsequently amplified a subset of the genes
found in the tetrapod lineage (Fig. 3C). It is of interest to
note that despite the high level of sequence conservation
in substrates for these enzymes including chordin and the
fibrillar collagens, the teleost and tetrapod lineages have
evolved subtly different expanded repertoires of tolloid
isomers.

4. Meprin
No meprin orthologue was identified in the ciona
genome. This may have been because this class of metz-
incin was deleted on the ciona lineage. Indeed, meprin
orthologues could not be identified in the Ciona savignyi
or Strongylocentrotus purpuratus (sea urchin, echinoderm)
genomes, by BLAST analysis, implying that the meprins
are most likely a vertebrate invention. The human (tetra-
pod) meprin genes appear to have arisen by genome
duplication from the early vertebrate progenitor since
these genes are located in paralogous regions of the
human genome (6p12-p11 and 18q12.2-q12.3 – see
additional file 1).

5. MMP
The majority of the complexity that characterises the ver-
tebrate MMP gene family arose during early vertebrate
evolution. The vertebrate genes appear to have amplified
from five of the seven genes present in the ancestral verte-
brate (Fig. 4). Most of the MMP sub-groups show a further
expansion along the teleost lineage – wherever a zebrafish
orthologue is present, in most cases there are two per
human orthologue (Fig. 4). Indeed, this pattern is most
apparent within the MMP E sub-group, which exhibits in
large part the classical expansions predicted by genome
duplication events associated with vertebrate evolution,
expanding from a single gene in ciona to four in man and
ten (two more than the eight predicted) in zebrafish
(Tables 1 and 2). The amplifications along both the verte-
brate and subsequent teleost lineages of the type I trans-
membrane family (MT-MMPs), suggest that the genes are
highly retained following duplication, presumably by
subfunctionalization into tissue-specific forms, and may
have a less tightly constrained functions than other mem-
bers within the MMP gene sub-family. Within the MMP F
sub-group, the presence of an expanded set of teleost
orthologues for human MMP 7 & 20 may relate to how
teleost teeth are continuously replaced. MMP7 is a matri-
lysin and MMP20 is an enamelysin, which digests amelo-
genin, and is present in newly formed tooth enamel [53].

There are relatively few tetrapod specific innovations
within the MMP gene family. Although no zebrafish genes
are present in the MMP A sub-group, the presence of
ancestral invertebrate genes in both D. melanogaster and C.

intestinalis suggests that orthologues were lost on the tele-
ost lineage. In addition, it is likely that MMP26 evolved
during the primate lineage as it has only been identified
in human, chimpanzee and rhesus monkey genomes.
There are two MMP23 genes in both the tetrapod and tel-
eost lineages (MMP B sub-group). The human MMP23A
and B have both ShK toxin and immunoglobin-like
domains whereas the zebrafish MMP23a and MMP23b do
not. A single copy of MMP23 present in rodent genomes
also contains the ShK domain. Thus, the phylogenetic
analyses coupled with domain structure information infer
that the MMP23 gene acquired the ShK domain early dur-
ing the tetrapod lineage; and that the two copies in man
evolved from a recent duplication event that occurred
after the rodent-primate divergence. It is of note that ShK
domains, potent potassium channel inhibitors, have only
been identified in one other family of vertebrate genes,
microfibrillar-associated glycoproteins, and are mainly
present in sea anemone metridin toxin and several hypo-
thetical proteins in nematodes [54,55]. The most exten-
sive amplification in the tetrapod lineage is apparent in
the MMP D sub-group, where the tetrapod members of
this sub-group appear to have evolved by tandem duplica-
tion (chromosome 11q22) from a gene similar to the
zebrafish MMPLe. Many of the tetrapod MMP D sub-
group genes are collagenases and as vertebrates have
accrued a more extensive and diverse group of collagens
(allowing them to develop a wider range of connective tis-
sues such as teeth, skin, cartilage, ligament and bone)
[56], one would also expect a more extensive repertoire of
collagenases and stromelysins to process and turnover
these ECM components.

6. TIMP
The vertebrate TIMP family evolved from a common
ancestor present at the start of vertebrate evolution. The
distribution of the four human TIMP genes within paral-
ogous regions of the human genome suggests that the
family arose from the large-scale duplication events asso-
ciated with early vertebrate evolution [57]. In a similar
manner to the BMP1/TLL gene family, the TIMP genes
exhibit different patterns of gene retention between tetra-
pods (single copies of TIMP1, 2, 3 and 4) and teleosts
(four TIMP2) (Fig. 3E). It is possible that following the
large-scale duplication events in early vertebrate evolu-
tion, some of the four subtypes of TIMP (TIMP1, 3 and 4)
were lost along the teleost lineage and that the remaining
TIMP2 was co-incidentally or subsequently amplified.

Metzincin genes in ciona compared to nematodes and 
insects
The metzincin gene superfamily has ancient metazoan
origins, evident in the few protostome orthologues
present in these families. It is apparent that a small subset
of the metzincin genes, specifically some members of the
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ADAMTS and MMP clades, have amplified on the deuter-
ostome lineage as the ciona genome contains increased
numbers of family members compared to the protostome
genomes (Table 3; Fig. 3A and 4). It is also clear that some
of the expansions seen in the genomes of extant organ-
isms have arisen from lineage specific duplication events
(e.g. D. melanogaster ADAM orthologues kul and kuz,
ADAM A sub-group Fig. 2; D. melanogaster BMP1/TLL
orthologues tolkin and tolloid, Fig. 3C; and C. intestinalis
MMPa1, a2 and a3, MMP A sub-group, Fig. 4). Neverthe-
less, taking an overview of the phylogenetic data pre-
sented, it is most striking how similar the ciona
complement of metzincin genes is to that of the proto-
stomes (Figs 2, 3, 4; Table 3), suggesting that the metz-
incin gene complement has remained relatively stable
throughout the evolution of both the protostome lineage,
and the deuterostome lineage up to and including early
chordates. This is in accord with the relative extracellular
matrix gene content of these two lineages, which is also
highly comparable between protostomes and early chor-
dates [39].

Metzincin genes in human compared to ciona
Apart from a rodent-specific amplification in the ADAM
clade, human and mouse complements of metzincin
genes are very similar. Therefore, for the purpose of this
study, the human complement of metzincins was used as
a representative of the generic complement in the tetra-
pod lineage. Most of the families of metzincin genes
found in vertebrates are represented in ciona (Table 1)
and therefore evolved before the divergence of the uro-
chordate and vertebrate lineages (Table 1). There is a sin-
gle instance of an apparent de novo creation of a vertebrate
metzincin family, the meprins, although it is also possible
that the meprins evolved earlier in chordate evolution but
the orthologue was subsequently ablated in ciona. How-
ever, the major evolutionary change in the metzincin gene
repertoire of vertebrates in comparison with ciona is the
widespread duplication of the majority of pre-existing
genes (Table 1). Indeed, the nineteen ciona metzincins
fell into sixteen clades where the majority of vertebrate
genes had duplicated to produce two to six paralogues per

clade (Tables 1, 3 and Figs. 2, 3, 4). Metzincin genes are
distributed throughout the human genome. Some of the
duplications in the vertebrate metzincin gene families
have arisen from tandem duplication events. However,
many of the human metzincin genes are distributed
within multiple paralogons suggesting that large-scale
genomic or genome duplication events must have played
a significant role in the generation of these vertebrate
metzincin genes. Therefore, it appears most likely that the
majority of the complexity apparent in the vertebrate
(tetrapod) metzincin compliment arose during early ver-
tebrate evolution by duplication of pre-existing genes.

The most comprehensive mechanism of producing wide-
spread and co-ordinated gene duplication is genome
duplication and increasing evidence supports the notion
that the at least one, if not two, rounds of genome dupli-
cation occurred during early vertebrate evolution [57,58].
The phylogenies within the metzincin superfamily sup-
port this contention, where the majority of human dupli-
cates are in paralogous regions of the genome (ADAMTS,
ADAM, Meprin, MMP and also TIMP). Thus, the relation-
ship between ciona and tetrapod (human) metzincin
genes shows, in general, an amplification in gene number
indicative of the one to two rounds of genome duplica-
tion associated with early vertebrate evolution [57].

Metzincin genes in teleosts compared to tetrapods
The identification of metzincin orthologues in the teleost
Danio rerio has not only inferred multiple duplications
specific to the teleost lineage, but has also highlighted
tetrapod-specific innovations in the metzincin gene fami-
lies. Taking an overview of the phylogenetic data, a major-
ity of the zebrafish metzincin genes occur in pairs (see
Figs. 2, 3, 4). It should be noted, however, that some of
these pairs of fish genes are almost identical in sequence
indicating that they have arisen very recently, probably by
tandem gene duplication. An increased number of metz-
incin paralogues in the zebrafish compared to human
genome is what would be predicted if a teleost-specific
genome duplication had occurred after their divergence
from the tetrapod lineage [59].

Table 3: Core metazoan metzincins and deuterostome innovations.

Gene family Ancestral protostome* Ciona Human Zebrafish

ADAM 3 3 21 22
ADAMTS 5 7 25 27
BMP1/TLL 1 1 3 4
Meprin 0 0 2 4
MMP 2 5 25 26
TIMP 1 1 4 4

The number of genes present in the ancestral protostomes and chordate lineages are displayed for their respective gene family. * Ancestral 
Protostome content is the representative gene content based on Drosophila melanogaster, Apis mellifera, Anopheles gambiae and Caenorhabditis elegans 
genomes.
Page 16 of 20
(page number not for citation purposes)



BMC Evolutionary Biology 2007, 7:63 http://www.biomedcentral.com/1471-2148/7/63
Our data also highlights different ways in which teleosts
and tetrapods have evolved to perform similar functions.
For instance, fish and tetrapod lineages share highly con-
served fibrillar collagens requiring N- and C-terminal
processing during assembly. The C-proteinase BMP1/TLL
family members in fish and man are related but the fish
gene complement has arisen by fish-specific amplifica-
tions and the deletion of paralogues conserved in tetrap-
ods (Fig. 3C). Similarly, the zebrafish appears to have
ablated two of the three highly specific N-proteinase genes
found in man (ADAMTS2, ADAMTS3 and ADAMTS14;
Fig. 3A), which are believed to have evolved prior to the
divergence of the teleost and tetrapod lineages due to their
paralogous locations within the human genome.

It is surprising that the fish genome seems to have refined
its metzincin repertoire to a much greater extent than
tetrapods. We contend that the occurrence of so many
tetrapod metzincin homologues in paralogous genomic
loci is a reasonable indicator that most of these duplica-
tions resulted from the genome events characterising early
vertebrate evolution. Subsequently, the teleost and tetra-
pod lineages must have shared this metzincin repertoire at
their divergence. However, in a number of cases, the tele-
ost lineage has subsequently ablated a significant number
of paralogous genes that have been retained on the tetra-
pod lineage (e.g see ADAMTS clade; Fig. 3A). It is possible
that these differences in gene retention patterns were facil-
itated by a teleost-specific genome duplication event [37].
It is of interest to note that a recent large-scale analysis of
the zebrafish genome postulated that the genome duplica-
tion events associated with early vertebrate evolution
characterized the fish to a much greater extent than the
later teleost specific large-scale duplication [60]. However,
it may be that this extra genome duplication provided the
teleost genome with a degree of plasticity, seen by differ-
ential gene loss within the phyla, that could account for
the increase in speciation from a few dozen ray-finned
fishes to over 25,000 teleosts [61,62]. The relative dupli-
cation and recombination driven plasticity exhibited
within the teleost genomes [62,63], leads us to speculate
that it may be necessary to combine the results from mul-
tiple teleost genomes (such as Danio rerio, Oryzias latipes,
Takifugu rubripes, Tetradon nigroviridis and most recently
the stickleback Gasterosteus aculeatus) to achieve a view of
a truly representative teleost genome for comparative pur-
poses. For instance, comparison of the zebrafish and Tet-
radon/Takifugu genomes [64,65] revealed that despite the
high degree of synteny and the retention of similar num-
bers of gene duplicates, in a significant number of cases,
different paralogues have been retained. Indeed, a study
on the ADAMTS complement of Takifugu rubripes reveals a
similar number of genes compared to the zebrafish
reported here (16 versus 14 per genome respectively) [66].

However, the pattern of gene duplication, retention and
loss is markedly different in the two species.

Conclusion
The complexity seen in the vertebrate metzincin gene fam-
ilies was mainly acquired during vertebrate evolution
through the duplication of pre-existing genes rather than
through de novo gene innovation. Prior to the emergence
of vertebrates, the metzincin gene repertoire in proto-
stomes and invertebrate deuterostomes remained rela-
tively stable. The metzincin gene repertoire of extant
tetrapods, such as man, has resulted largely from duplica-
tion events associated with early vertebrate evolution. The
teleost repertoire of metzincin genes in part parallels that
of tetrapods but has been significantly modified, perhaps
as a consequence of a teleost-specific duplication event.

The analyses described above provide the most likely
explanation for how the complexity of the metzincin gene
superfamily has arisen. This represents the first step in
determining the functional significance of the subtly dif-
ferent patterns of gene retention in different vertebrate lin-
eages that will provide new insights into events that
enabled and underpinned the evolution of vertebrates
and the different classes and species therein.

Methods
Sequence identification
To identify homologous genes, the complete sequences of
the human metalloprotease genes were used to probe the
genome and TIGR gene index of C. intestinalis and the
genome of Danio rerio using TBLASTN and PSI-BLAST
with cut-off expectancy values of E = 1 [33,67-69].
Resources used are available at JGI, TIGR and NCBI [70-
72]. Ciona gene models were also detected using the
orthologue detection program InParanoid by keyword
searches using ECM gene family names as queries (e.g.
'MMP) [73,74]. To identify as many metalloprotease
genes as possible, reciprocal BLAST searches of the ciona,
human, zebrafish and non-redundant databases were per-
formed. In addition, the mouse genome was searched in
the case of the ADAM gene family.

Frequently, EST data contradicted the ciona gene model
coding sequence proposed by JGI. In instances where an
EST clearly demonstrated the misplacement of exons in
the recovered JGI model, the protein sequence was cor-
rected to reflect this. Through comparison with recovered
ESTs and by searching flanking genomic DNA using
GENEWISE and SignalP [75,76], erroneous and missing
regions of the gene models were corrected. Modified
sequences were checked by aligning with respective
human ECM genes using CLUSTALX [77] and corrected
coding sequences (presented in the annex to Supplemen-
tary Table 1) used for subsequent analyses. Zebrafish gene
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models were checked in a similar manner using the NCBI
and Ensembl [72,78] websites using comparisons against
both the human and ciona predicted gene models.

Phylogenetic analyses
Phylogenetic analyses were performed on the metallopro-
tease genes for each gene family. The accession numbers
for protein sequences used in these studies are presented
in Supplementary Table S1. The ciona and zebrafish genes
identified were aligned with each gene family using CLUS-
TALX [77]. A preliminary bootstrapped Neighbor-joining
tree was drawn using CLUSTALX and the sequences were
then divided into sub-groups based on their position in
the tree. For each sub-group, new multiple alignments
were created, gap-containing sites were removed and four
independent phylogenetic methods were performed.
Neighbor joining trees and bootstrap replicates were gen-
erated using SEQBOOT, PROTDIST, NEIGHBOR and
CONSENSE from the PHYLIP package using the default
settings [79]. Maximum Parsimony trees and bootstrap
replicates were obtained using SEQBOOT, PROTPARS
and CONSENSE and Maximum Likelihood trees were
inferred using PROML from the PHYLIP package using the
default settings [79]. The JTT model of amino acid substi-
tutions was used with global rearrangements and correc-
tion for rate heterogeneity (α value obtained from
TREEPUZZLE [80]). Bayesian tree inference values were
produced from the MrBayes programme [81] where
Markov Chain Monte Carlo analysis was performed for
100,000 generations using 6 chains.

List of Abbreviations
ADAM A disintegrin and metalloprotease domain

ADAMTS A disintegrin and metalloprotease domain with
thrombospondin type 1 motif
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