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Abstract

Background: We use a simulation-based model to study the impact of female philopatry and
heterogeneity of habitat quality on the evolution of primary sex ratio.

Results: We show that these conditions may lead to strongly biased ESS habitat-dependent sex
ratios, under two kinds of density-dependent population regulation. ESS sex ratios are always
biased towards females in good habitats, towards males in poor habitats, and are generally
equilibrated considering the whole population. Noticeably, the predicted bias of sex ratio usually

increases with decreasing female philopatry.

Conclusion: The selection forces responsible for these results are fully described. This study
provides a new perspective on the evolutionary significance of temperature sex determination.
We discuss the case of turtles by comparing our theoretical results with field observations.

Background

Natal philopatry, i. e. the tendency for individuals to
breed at or near their place of origin, has been described
in a variety of animal species, including mammals [1],
birds [reviewed in [2]], reptiles [3], and fish [4]. In such
species, sex biased dispersal has often been observed as a
result of natal homing being more frequent in one sex
than in the other [5,6]. Indeed, there seems to be a ten-
dency for female-biased dispersal in birds and male-
biased dispersal in mammals [7-9].

Sex-biased dispersal has important consequences on the
dynamics and on the social and genetic structures of nat-
ural populations [10,11], as well as on the evolution of
phenotypic traits [12]. In particular, sex-biased dispersal
provides the conditions for the evolution of biased sex
ratios: parental manipulation of the sex ratio allows indi-

viduals to avoid kin competition [13,14], to benefit from
local resource enhancement [15], or to select habitat in a
heterogeneous environment [16].

Since its description, the determination of sex by temper-
ature (TSD) in many reptiles has been a long standing
puzzle from an evolutionary point of view [17-21]. The
extreme sex ratios sometimes found in natural nests are
indeed difficult to reconcile with the Fisherian frequency-
dependent selection for equal investment in both sexes
[22]. In order to find an adaptive explanation for environ-
mental sex determination, Charnov and Bull [23] pro-
posed a theoretical model in which habitat is
heterogeneous and sexes benefit differentially from habi-
tat quality. However, according to Warner and Shine [24],
the assumptions of this model are difficult to test in rep-
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tiles, and the published literature "reflects its overall plau-
sibility [...] rather than specific experimental evidence".

One of the latest proposed hypotheses accounting for TSD
in reptiles is based on female natal philopatry [16,25]. In
sea turtles in particular, there is substantial evidence for
natal homing of nesting females [26,27] and for the exist-
ence of male dispersal [28-30]. This has lead to the
hypothesis that nest site quality, if incubation success dif-
fers between nesting sites, could be inherited maternally
[31]. Such spatial variability of incubation success is
apparently frequent on nesting grounds [32-34].

According to Reinhold [25] and Julliard [16], sex-specific
dispersal should lead to satisfy Charnov and Bull's [23]
assumption that sexes benefit differentially from habitat
quality. In a heterogeneous environment, natural selec-
tion should favour the sex ratio strategy maximizing the
number of offspring breeding in high-quality habitats.
Therefore, the evolutionary stable strategy (ESS) of sex
ratio is one that overproduces the less dispersing sex
(females in the case of female natal homing) in high-qual-
ity nesting sites and overproduces the most dispersing sex
(males in the case of female natal homing) in low-quality
nesting sites [16].

The model of Julliard [16] is based on several assumptions
other than sex-biased dispersal and habitat patches of dif-
ferent quality. First, it assumes that reproduction, from
mating to birth, occurs in the same patch. It also assumes
that the population size is regulated by density-depend-
ence occurring within each patch. These assumptions may
be violated in migrating species, such as aquatic turtles
that live in water and nest on earth. Because the scales at
which mating and density-dependent regulation occur are
key factors for population dynamics and evolution [35],
we here present a new model introducing important mod-
ifications: mating sites are independent from nesting sites,
and population regulation may occur either within nest-
ing sites (hereafter named HABITAT model) or at the level
of the whole population (TOTAL model). In any case, we
show that the ESS primary sex ratio can be strongly biased
depending on the nesting habitat but that the sex ratio of
the overall population is generally equilibrated.

Results

The model

We use an individual-based simulation model to find the
ESS primary sex ratio strategy dependent on habitat qual-
ity under female natal philopatry. The model describes a
simplified life-cycle of sea turtles (fig. 1).

Nesting beach
The nesting beach is divided in 2 kinds of habitat differing
in their quality: GOOD habitats (proportion g of the nest-
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ing beach) or POOR habitats (proportion 1-g), with 0 < g
<1 (fig. 1). In GOOD habitats, a nesting female produces
F times more offspring than in POOR habitats, with F> 1.

Sex ratio

We use a genetic architecture that allows the uncon-
strained evolution of sex ratio in each habitat so that the
ESS is reached at the equilibrium. The strategy of sex ratio
related to the habitat for every adult is determined by 2
alleles (G,/G,) the mean of which determines the off-
spring sex ratio (percentage of males) for nests in GOOD
habitats, and 2 alleles (P,/P,) the mean of which deter-
mines the sex ratio for nests in POOR habitats, with G,
G,, P, and P,, between 0 and 1. These alleles are located
on 2 unlinked loci so that any offspring independently
inherits one allele of its mother (G, and P,,,.,) and
one of its father (G, and P,y,,) at each locus. At each
generation, an allele has a probability 0.005 to mutate,
and one mutation is an increase or decrease of 0.005 in
the value of the allele.

Population

The population size is fixed equal to 5,000 adults. Each
adult is defined by its sex (male or female), the kind of
habitat where it was born (GOOD or POOR), and the val-
ues of G, G,, P; and P,. Generations are discrete: adults
breed once before dying. The sex ratio of the overall pop-
ulation (SR,,) is defined as the total number of males
divided by 5,000.

Reproduction and dispersal

Mating takes place in a unique reproductive area (fig. 1)
where all adults meet, regardless of their provenance hab-
itat. Each female mates with one randomly chosen male.
Females then return to the beach to nest. A proportion (1-
dy) of the females ('non-dispersing females') nest in the
same kind of habitat where they were born. The comple-
ment (dy) are considered as 'dispersing females' and are
randomly distributed between GOOD and POOR habi-
tats: for any dispersing female, the probability to nest in a
GOOD habitat is g and in a POOR habitat is (1-g).

Density-dependence regulation

We apply one of two different kinds of density-dependent
regulation. The first one (called HABITAT) occurs in each
habitat and corresponds to a regulation at the scale of the
nesting beach: 5,000 individuals will grow to adulthood,
a proportion Fg/(Fg+1-g) born in GOOD habitats and a
proportion (1-g)/(Fg+1-g) born in POOR habitats. The
second one (called TOTAL) consists in the random draw
of 5,000 individuals in the entire population of offspring,
which will grow into adulthood. Then, in the adult popu-
lation, the proportions of individuals born in GOOD hab-
itats and in POOR habitats are respectively FN,/(FN+N,)
and N,/(FNg+ N,), with N, and N, the numbers of females
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NESTING BEACH

POOR HABITAT

MATING AREA

Figure |

Simplified life-cycle used in the model. The parameters on the lines are the probability for an individual to follow it (equal
to | in the absence of notation). Dashed lines are for males, plain lines for females. Bold lines represent individuals native from
GOOD habitats, thin lines represent individuals native from POOR habitats.

nesting in POOR and GOOD habitats. This corresponds
to a regulation at the scale of the entire population, on
feeding grounds for example.

Simulation results

HABITAT density-dependent regulation (fig. 2)

For d;= 0 (total philopatry), the ESS sex ratios are equili-
brated in both habitats (G = P = 0.5). For 0 <d;< 1 (partial
philopatry), the sex ratio is always biased towards males
in the POOR habitat and towards females in the GOOD

habitat (G < 0.5 <P). For given values of F and d;, the sex
ratio is more biased in the habitat that contributes less to
the whole population: when the proportion of females
nesting in GOOD habitats is higher than the proportion
of females nesting in POOR habitats (Fg > 1-g), the sex
ratio is more biased in the POOR habitat; when Fg < 1-g,
the sex ratio is more biased in the GOOD habitat. The sex
ratio of the whole population is always unbiased (SR,,, =
0.5). When F or d; increases, the habitat-dependent sex
ratios are more and more biased, until the sex ratio in one
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ESS sex ratios in GOOD habitats (G), POOR habitats (P) and in the whole population (SR,,,) as a function of
female dispersal rate (dy) in the model with habitat density-dependent regulation. (a): g = 0.3. (b): g = 0.7. Bars

show maximal and minimal values in 20,000 generations at the equilibrium. Triangles: G, squares: P and circles: SR

o Pl2in sym-

bols: F = |.5, open symbols: F = 2. Results are shown for simulations run with initial allele values of G,,G,,P, and P, = 0.5.
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habitat may become totally biased (P =1 or G = 0). This is
illustrated in fig. 2b by g = 0.7, F = 2 and d; = 0.9.

TOTAL density-dependent regulation (fig. 3)

For d;= 0 (total philopatry), females nest only in GOOD
habitats and the situation is the same as with a single pop-
ulation nesting in a homogeneous environment (G = SR,
= 0.5). For 0 < d; < 1 (partial philopatry), the sex ratio is
always biased towards males in POOR habitats and
towards females in GOOD habitats (G < 0.5 <P) like in the
HABITAT model. For low values of d, only males are pro-
duced in POOR habitats (P = 1) and the sex ratio in
GOOD habitats is such that SR,,, = 0.5. In contrast with
the HABITAT model (i) as soon as d;> 0, the sex ratio is
here totally male biased in POOR habitats, even for low
values of F, and (ii) as long as F > 1, a decrease of F leads
the sex ratio in GOOD habitats to be more female biased.
When dyincreases, the sex ratio in GOOD habitats is more
and more female biased until it may become totally
biased (G = 0) as well. When G = 0, a further increase of d;
leads the sex ratio in POOR habitats to decrease (P < 1)
and SR, to increase (SR,,, > 0.5). This is illustrated in fig.
3abyg=0.3,F=14andd=0.9.

Discussion

Interpretation of the results and comparison with previous
models

From our simulation results, we identify 2 evolutionary
forces leading to the ESS sex ratios in our models. The first
force is the consequence of mating taking place in a
unique area for the entire population, leading SR, to be
equal to 0.5 [22]. The second force (habitat selection) is
due to the difference in quality between habitats and the
difference in dispersal rate between sexes: because females
are always the less dispersing sex unless dy= 1, female off-
spring should be under-produced in POOR habitat and
overproduced in GOOD habitats in order to increase the
likelihood that females will nest in GOOD habitat [16].

In the HABITAT model, in case of high female philopatry
(low d;values), the overproduction of female offspring in
GOOD habitats may lead to a high number of females
returning in GOOD habitats to nest, and thus to a higher
competition for resources in GOOD habitats compared to
POOR habitats. In the case of low female philopatry (high
dy values), nesting females are more evenly distributed
between habitats, and the strength of the competition for
resources in GOOD habitats decreases. For a given value
of d;, the optimal distribution of adults between habitats
(i.e. when the competition for resources is equal between
habitats) is attained when there are F times more females
nesting in GOOD habitats than females nesting in POOR
habitats (ideal free distribution of nests [36]). For d;= 0,
this is obtained with unbiased sex ratios (G = P = 0.5). For
d;> 0, the female bias in GOOD habitats increases with
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higher values of d;in order to reach the ideal free distribu-
tion of nests. When F increases, GOOD habitats can
receive more females per unit of resource, and the sex ratio
is then more biased towards females in GOOD habitats.

To sum up, a strategy of sex ratio must fulfil two condi-
tions to be an ESS in the HABITAT model: (i) The sex ratio
of the whole population is equilibrated; (ii) The number
of nesting females per unit of resource is F times larger in
GOOD habitats than in POOR habitats. These two condi-
tions derived from our verbal argument can be expressed
mathematically as:

Fg(1-G)+(1-g)(1-P)

(i) SRy =05« =0.5

Fg+(1-g)
(i) Ny N, 1-p F(Fsdj—1+ds—gdy)
Fg 1-g 1-G (1-g)d;—F(1-gd)

with N, and N, the number of female nesting in POOR
and GOOD habitats, respectively. When the second con-
dition leads the sex ratio in POOR habitats to be totally
male biased (P = 1), the sex ratio in GOOD habitats is
determined by the first condition (SR,,, = 0.5). This case is
illustrated in fig. 2b for g = 0.7, F = 2 and d;= 0.8. When
the second condition leads the sex ratio in GOOD habi-
tats to be totally female biased (G = 0), the Fisherian force
still favours an unbiased sex ratio for the entire popula-
tion (SR,,, = 0.5) while the habitat selection force favours
the production of more males in POOR habitats. The two
selective forces then equilibrate for G = 0 and for an inter-
mediate value of P, with P > 0.5 and SR, > 0.5. The sex
ratio of the whole population is male-biased but stays
close to 0.5 (results not shown).

In the TOTAL model, the first force, conducting SR, to be
unbiased, is the same as in the HABITAT model. However,
the habitat selection force is different: because there is no
density-dependent regulation in habitats, a nest in a
POOR habitat always produces F times fewer adults in the
next generation than a nest in a GOOD habitat. So, it is
always more advantageous for females to nest in GOOD
habitats. Whatever the values of dyand g, the probability
to nest in GOOD habitats is higher for females born in
GOOD habitats than for females born in POOR habitats.
Consequently, females should be produced in GOOD
habitats rather than in POOR habitats. For males, regard-
less of the habitat where they are born, the probability of
mating with a female that will nest in a GOOD habitat is
the same. Hence, the second force selects against the pro-
duction of females in POOR habitats, resulting in the pro-
duction of males only. In GOOD habitats, the ESS sex
ratio is the one that permits SR, , to be equilibrated. These
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Figure 3

ESS sex ratios in GOOD habitats (G), POOR habitats (P) and in the whole population (SR,,,) as a function of
female dispersal rate (dy) in the model with total density-dependent regulation. (a): g = 0.3. (b): g = 0.7. Bars
show maximal and minimal values in 20,000 generations at the equilibrium. Triangles: G, squares: P, and circles: SR,,,. Plain sym-
bols: F = 1.4, open symbols: F = 2. Results are shown for simulations run with initial allele values of G,,G,,P, and P, = 0.5.
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two conditions derived from our verbal argument can be
expressed mathematically as:

(i) P=1

FN,(1-G)

ENg +N,

(ii) SRy =0.5& =0.5@c=o.5{1—

dr(1-3)
F(l - df + gdf )

with N, and N, the numbers of females nesting in POOR
and GOOD habitats, respectively. When F increases,
GOOD habitats produce more individuals compared to
POOR habitats, so the ESS sex ratio in GOOD habitats
needs to be less female biased to equilibrate the global sex

ratio.

When it is not possible to satisfy these two conditions
simultaneously (i.e. when F < d{1 - g)/(1-dp+gdy)), the
habitat selection force still favours a totally male-biased
sex ratio in POOR habitats, while the Fisherian force
favours the production of some females in POOR habitats
so that SR, = 0.5. The two selective forces then equilibrate
for G = 0 and for an intermediate value of P, with P< 1 and
SR,,;> 0.5. The sex ratio of the whole population is male-
biased but stays close to 0.5. This case is illustrated in fig.
3bforg=10.3,F=2andd;=009.

With either kind of density-dependent regulation, our
results show that partial female philopatry (0 < d;< 1)
leads the ESS sex ratio to be biased towards males in
POOR habitats and towards females in GOOD habitats.
Extremely biased sex ratios are obtained for higher values
of F and d;in our HABITAT model and most values of d;
and F in our TOTAL model. We predict extraordinary sex
ratios for ordinary values of parameters, especially in the
TOTAL model where only males may be produced in
POOR habitats. These conditions are likely to be met in
many situations involving female philopatry, including
the case of sea turtles (see below). The population size
assumed in our model is quite large and the population is
panmictic. Therefore, the selective forces resulting from
kin competition (Local Mate Competition and Local
Resource Competition [13,37]) have no influence.

The density-dependent regulation in our HABITAT model
is the same as in Julliard [16]. However, here both sexes
migrate before mating in an area distinct from nesting
habitats. The results of Julliard's model and ours are sim-
ilar on 2 points: (i) ESS sex ratios are male-biased in
POOR habitats and female-biased in GOOD habitats, and
(ii) the bias of ESS sex ratio increases when the female phi-
lopatry decreases. In contrast with Julliard, we find an
unbiased ESS sex ratio for the overall population. Guillon
et al. [38] have refined the model of Julliard [16] by calcu-
lating reproductive values in a more comprehensive way.
Total male dispersal (d,, = 1) in their model yields the

http://www.biomedcentral.com/1471-2148/7/13

same results as our HABITAT model, although the life
cycles modelled are indeed different.

A promising model by Reinhold [25] has already pro-
posed that female philopatry and spatial heterogeneity
offer the conditions for the evolution of environmental
sex determination in reptiles. This study assumed the
same global density-dependent regulation as in our
TOTAL model and concluded that a sex ratio strategy
biased towards males in low-quality sites and towards
females in high-quality sites was favoured relatively to
unbiased sex ratios resulting from genetic sex determina-
tion. The method used by Reinhold did not allow him to
find the values for the ESS sex ratios, yet his results sug-
gested that the sex ratio was equilibrated at the whole
population scale. Reinhold [25] also restricted the range
of his parameters : (i) high-quality habitats were assumed
to be rare (equivalent in our model to g < 0.5), and (ii) the
proportion of females born in low-quality sites but nest-
ing in high-quality sites was constrained by the difference
in habitat quality (equivalent to Fd{1 - g) < F - 1 in our
model, i.e. high female philopatry or high difference in
habitat quality). We here show that biased sex ratios strat-
egies can invade and get to fixation beyond Reinhold's
range of parameters. Indeed, low F and high dyvalues are
biologically realistic and give the most extreme sex ratios
in our study, these results being quite unexpected. Fur-
thermore, we obtain the values for the ESS sex ratio and
show why equilibrated population sex ratio is a necessary
condition for ESS in most cases. In contrast, Freedberg and
Wade [31] have proposed that inheritance of nest-site
through female philopatry could lead to female biased
sex-ratio at the level of the whole population. Their con-
clusion was not based on an ESS analysis and is therefore
difficult to compare to our results.

Implications for the evolution of TSD in reptiles

The model may apply to any species with Environmental
Sex Determination or with maternal control of sex alloca-
tion that fits our main assumptions, namely heterogeneity
of habitat quality and female philopatry. The case of sea
turtles, which is probably the most documented one, is
discussed below.

The first key assumption of the model is that the environ-
ment is heterogeneous with respect to survival from ovi-
position to reproduction. The model then predicts that
the primary sex ratio should adjust to the quality of the
nesting environment, with more females being produced
at high quality habitats and more males at low quality
habitats. For species where females are produced at high
incubation temperature (TSD Ia), this would be the case if
temperature during incubation positively correlates with
nest success. Heterogeneity in temperature has often been
described between neighbouring nesting beaches, due to

Page 7 of 11

(page number not for citation purposes)



BMC Evolutionary Biology 2007, 7:13

difference in composition or albedo of the sand [e.g.,
[32,39]]. Temperature heterogeneity can also be found
within a nesting beach. The cooling effect of tides creates
a decrease of temperature from higher to lower beach
zone [34,40-42], and the back of the beach may be cooler
than the open beach, due to the presence of shadowing
vegetation [43,44]. Interestingly, low temperature beaches
or zones are often associated with a relatively lower hatch-
ing success [[32,34,39,41,42,45], but see [46]]. Indeed,
nests on the lower beach can be lost due to erosion or
inundation [33,34,47-52], and nests in the vegetation
zone may suffer a higher predation rate or rupture risk
[53-55]. In addition, nests in the lower beach zone may be
more at risk of inundation by rainfall [56,57] and hatch-
lings emerging in the vegetation zone may face orienta-
tion problems in finding the sea [49,58,59]. Low
temperature itself could influence hatching success by
slowing the development of embryos and thus increase
incubation time and thereby the risk of loss, destruction
or predation. Overall, on many nesting grounds, even
though excessively high temperatures can have detrimen-
tal effects on incubation process [60], a higher nest success
could correlate with relatively high, feminizing, tempera-
tures, as predicted by the model.

The present model investigates the consequences of
female philopatry on the ESS sex ratio. Adult natal philo-
patry is difficult to observe in species with delayed sexual
maturity, such as sea turtles because of the long time
between birth and the first reproduction event. Neverthe-
less, the use of maternally inherited genetic markers
(mitochondrial DNA) has provided support for female
natal homing at a regional scale [e.g., [61-64]]. At a finer
spatial scale, genetic isolation by distance of female green
turtles has been observed on the beach of Tortuguero [65].
In addition, nest site fixity, i.e. the tendency for an indi-
vidual female to cluster its nests, has been observed within
a given season (renesting events) at the scale of different
beaches [e.g., [48,49,66-68]], along the coastal axis of a
nesting beach [e.g., [26,44,69]] or along the vegetation to
ocean axis [44,59]. The same behaviour has also been
observed for female sea turtles nesting in several breeding
seasons (remigration events) [26,28,48,67,70]. Overall,
although female sea turtles seem to be highly philopatric
to their natal region, further work is still needed to test the
model's predictions. In this aim, studies of female philo-
patry in relation with spatial variation of nesting success
and sex ratios would be greatly valuable.

Destruction of previous nests by nesting females has been
observed on several beaches [71,72]. Caut et al. [73] have
shown that such a covering of nests may also be detrimen-
tal to the incubation success of the overlaying nest. At sat-
uration, the incubation success of the nesting area is
expected to tend to a finite rate, depending on the carrying
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capacity of the laying environment. This is the basis for
the density-dependent regulation assumed in our HABI-
TAT model. Such a saturation may be rarely observed
now, given the important human pressure on sea turtle
populations in the recent years by egg poaching, turtle
hunting and accidental catching [74], but could have been
reached in the past when sea turtles were much more
abundant. Alternatively, populations could be regulated
at the sea, by predation on juveniles or by competition for
food, as described in our TOTAL model. If density-
dependent regulation occurs at both levels (first on nest-
ing beaches and then at sea), the evolution of sex ratio
should follow the same pattern as in the case of HABITAT
density-dependent regulation alone. Indeed, this would
modify the HABITAT model only by adding a random
draw of individuals from the adult population.

The model's assumptions may be satisfied in other species
of turtles. In freshwater turtles, nest temperature could be
positively correlated with hatching success [[75-77], but
see [78]]. Female freshwater turtles exhibit nest site-fidel-
ity [e.g., [79-82]]. Furthermore, molecular studies have
found significant genetic structure among nearby nesting
sites [83,84] or genetic isolation by distance within a nest-
ing site [82], suggesting that natal homing is present in
freshwater turtles too.

Perspectives for refining the model

An important feature of the model is panmixia, resulting
from the absence of male philopatry. This assumption
may be violated in a variety of species. Further modelling
is warranted to investigate the consequences of relaxing
the hypothesis of panmixia, but preliminary work indi-
cates that the predicted sex ratios are very similar as long
as females are more philopatric than males.

In the present model, generations are discrete; i. e. indi-
viduals reproduce only once before dying. Describing a
long-lived species, with a juvenile phase and multiple
reproductive episodes, is not expected to change the pre-
dictions of the model. Only the time needed to reach the
ESS should increase [85]. However, introducing a tempo-
rally variable environment is expected to change the pre-
dictions of the model, especially in the case of
overlapping generations. The intensity of the habitat
selection force should decrease as the habitat becomes less
predictable from one generation to the next. Further work
would be useful to study the influence of temporal varia-
tion of habitat quality on the ESS sex ratios.

Another improvement of the model could be to allow
females to prefer high quality sites. In the HABITAT
model, perfect habitat selection by dispersing females (a
GOOD habitat is chosen F times more often than a POOR
habitat), leads to an ideal free distribution of breeding
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females. This should cancel the advantage of sex ratio
biasing [16,38]. In contrast, unless d;= 1, perfect habitat
selection in the TOTAL model would not equalize the
probabilities of different females reaching a GOOD habi-
tat, and is thus not expected to yield equilibrate ESS sex
ratios.

In our model, female dispersal can be considered as an
imperfect philopatry resulting from constraints on orien-
tation, migration or perception of the environment. Alter-
natively, dispersal could result from selection in a
temporally variable environment: when the quality of the
habitat is not completely predictable, individuals should
adopt a strategy that permits them to explore other breed-
ing-sites. It would thus be interesting to allow the joint
evolution of sex allocation and dispersal rate [86].

Conclusion

Our individual-based simulation model shows that
female nest-site philopatry and heterogeneity of habitat
quality provide sufficient conditions for the evolution of
biased habitat-dependent sex ratios. In all cases, the evo-
lutionary stable strategy is to overproduce females in good
quality habitats and males in low quality habitats, while
the sex ratio of the overall population is generally unbi-
ased. The values for the ESS sex ratios are strongly depend-
ent on the type of density-dependent regulation assumed.
Highly biased sex ratios are predicted for biologically real-
istic values of parameters corresponding to low female
philopatry and moderate difference in habitat quality.

To assess the contribution of our model in the study of the
evolutionary significance of temperature-dependent sex
determination, it should be tested in sea turtles by meas-
uring sex ratios and incubation success of natural nests.
We predict a positive correlation between incubation suc-
cess, measured as the proportion of eggs yielding juveniles
that reach the sea, and the proportion of females among
hatchlings. In sea turtles, high temperatures during incu-
bation lead to the overproduction of females in hatch-
lings. Preliminary evidence suggests that higher
incubation success could be correlated with high (femi-
nizing) temperatures. However, field studies are needed
to obtain more convincing evidence.

Methods
We search for the ESS values of sex ratio for different val-
ues of F, g and dj. At each generation i, we compute G' as

the mean of alleles at the G locus in the adult population
and P as the mean of alleles at the P locus in the adult
population. The total population sex ratio, SRfot , is calcu-

lated as the number of males divided by 5,000 (the total
number of adults). The simulations are run until values of

http://www.biomedcentral.com/1471-2148/7/13

Gi, Piand SRgot are stable. We then compute G, P and SR,

means of G/, Pland SR;UI , Tespectively, during 20,000 gen-

erations at the equilibrium. We take into account varia-
tions between generations by recording the maximum
and minimum of G/, P! and SRfO[ during this period. For
defined values of F, g and d;< 1, similar values are found
for G, P and SR,,,, regardless of the initial values of G,, G,,
P, and P,. In the absence of philopatry (d;= 1), depending

on the simulation, we obtain different equilibrium values
for sex allocations in GOOD and POOR habitats (G, P)
such that SR, = 0.5. Hence, results for d;= 1 are not pre-

sented in the figures.
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