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Abstract
Background: The pattern and timing of the rise in complex multicellular life during Earth's history
has not been established. Great disparity persists between the pattern suggested by the fossil
record and that estimated by molecular clocks, especially for plants, animals, fungi, and the deepest
branches of the eukaryote tree. Here, we used all available protein sequence data and molecular
clock methods to place constraints on the increase in complexity through time.

Results: Our phylogenetic analyses revealed that (i) animals are more closely related to fungi than
to plants, (ii) red algae are closer to plants than to animals or fungi, (iii) choanoflagellates are closer
to animals than to fungi or plants, (iv) diplomonads, euglenozoans, and alveolates each are basal to
plants+animals+fungi, and (v) diplomonads are basal to other eukaryotes (including alveolates and
euglenozoans). Divergence times were estimated from global and local clock methods using 20–
188 proteins per node, with data treated separately (multigene) and concatenated (supergene).
Different time estimation methods yielded similar results (within 5%): vertebrate-arthropod (964
million years ago, Ma), Cnidaria-Bilateria (1,298 Ma), Porifera-Eumetozoa (1,351 Ma),
Pyrenomycetes-Plectomycetes (551 Ma), Candida-Saccharomyces (723 Ma), Hemiascomycetes-
filamentous Ascomycota (982 Ma), Basidiomycota-Ascomycota (968 Ma), Mucorales-
Basidiomycota (947 Ma), Fungi-Animalia (1,513 Ma), mosses-vascular plants (707 Ma), Chlorophyta-
Tracheophyta (968 Ma), Rhodophyta-Chlorophyta+Embryophyta (1,428 Ma), Plantae-Animalia
(1,609 Ma), Alveolata-plants+animals+fungi (1,973 Ma), Euglenozoa-plants+animals+fungi (1,961
Ma), and Giardia-plants+animals+fungi (2,309 Ma). By extrapolation, mitochondria arose
approximately 2300-1800 Ma and plastids arose 1600-1500 Ma. Estimates of the maximum number
of cell types of common ancestors, combined with divergence times, showed an increase from two
cell types at 2500 Ma to ~10 types at 1500 Ma and 50 cell types at ~1000 Ma.

Conclusions: The results suggest that oxygen levels in the environment, and the ability of
eukaryotes to extract energy from oxygen, as well as produce oxygen, were key factors in the rise
of complex multicellular life. Mitochondria and organisms with more than 2–3 cell types appeared
soon after the initial increase in oxygen levels at 2300 Ma. The addition of plastids at 1500 Ma,
allowing eukaryotes to produce oxygen, preceded the major rise in complexity.
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Background
Organismal complexity can be defined in many ways,
although the most common measure is the number of cell
types [1-4]. Prokaryotes and many unicellular eukaryotes
have only one or a few cell types, but vertebrates have
more than 100 [1]. If cell types provide a tracer of complex
life, it is of interest to know the general pattern of increase
over the history of life. For example, a literal interpreta-
tion of the Cambrian explosion (520 million years ago,
Ma), when many animal phyla first appeared in the fossil
record, would be that a rapid increase in complexity
occurred during the last one-ninth of the history of the
planet. This apparent delay in the evolution of complex
life on Earth has contributed to the argument that com-
plex life may be rare in the universe [5]. Molecular clocks
have yielded earlier times for the origin of animal phyla
[6-9], but the methods have received criticism [10,11]. At
the same time, recent fossil discoveries have pushed back
the origins of some groups of eukaryotes [12,13],
although a great discordance remains between most
molecular clock results and the fossil record.

In this study, we have estimated a contour for the rise in
complex life using a phylogeny and timescale derived
from currently available protein sequence data. Ancestral
numbers of cell types were estimated using the resulting
phylogenetic and temporal framework. We have taken
care to address criticisms of past molecular clock studies
and have used all available timing methods applicable to
protein sequence data, including global (constant rate)
and local (variable rate) methods. The methods include
those based on least-squares analysis [14], Bayesian infer-
ence [15], and penalized likelihood [16]. To avoid any
potential artifacts arising from analysis of multiple align-
ments [17,18], we have also used concatenated datasets
[19]. We have tested our calibrations for reciprocity [20]
and have used both vertebrate and non-vertebrate fossil
calibrations and constraints. The results support a deep
history for complex multicellular eukaryotes, and impli-
cate oxygen as a possible trigger for the rise in complex
life.

Results
Phylogenetic analyses
Our analyses of the concatenated data sets produced the
following results: (i) animals are more closely related to
fungi than to plants, (ii) red algae are closer to plants than
to animals or fungi, (iii) choanoflagellates are closer to
animals than to fungi or plants, (iv) diplomonads,
euglenozoans, and alveolates each are basal to plants+ani-
mals+fungi, and (v) diplomonads are basal to other
eukaryotes (including alveolates and euglenozoans) (Fig.
1). Most of these relationships are uncontroversial except
for the uncertain position of the root of the tree as dis-
cussed elsewhere [21]. Our results with nuclear proteins

agree with earlier ribosomal RNA trees [22] in supporting
a root near the excavates (e.g., diplomonads) rather than
on the opisthokont-amoebozoan branch (e.g., animals,
fungi, and amoebas) [23]. Confidence values for these
relationships were high (>99%) using three phylogenetic
methods (maximum likelihood, minimum evolution,
and Bayesian inference) in five of the seven analyses (Fig.
1). For the remaining two analyses (ii and v), significant
support values were obtained with Bayesian inference, but
varied for maximum likelihood and minimum evolution.

Divergence times estimated with different methods
We estimated three deep (Precambrian) divergences in the
eukaryote tree using the primary (bird-mammal) calibra-
tion and MGLLS (see Methods). In each case, there were no
missing data; the data sets contained all proteins for all
taxa. The divergence times were: vertebrate-arthropod
(964 ± 132 Ma; 151 total and 120 rate constant proteins;
49,644 amino acids), animal-fungi (1492 ± 46 Ma; 188
total and 89 rate constant proteins; 31,362 amino acids),
and animal-plant (1524 ± 53 Ma; 188 total and 143 rate
constant proteins; 60,274 amino acids) (Table 1). These
dates were similar to previous estimates using fewer pro-
teins and different methods [8], and as secondary calibra-
tion points were found to be consistent in tests of
reciprocity (see next section). In turn, these three time
estimates were used as calibrations for estimating other
divergence times using least-squares and penalized likeli-
hood methods, and the 95% confidence intervals were
used as nodal constraints for the Bayesian analysis. Rate
parameters and a list of proteins used in the analyses are
in supplemental tables 1, 2 (see Additional files 1–2).

The use of all available methods for timing protein
sequence data (global and local clocks) and different
methods of handling the data (multigene and supergene)
resulted in remarkably similar estimates of divergence
time (Table 1). On average, the six methods differed only
5.5 (4.6–6.4) % from the mean divergence time for a par-
ticular node. The resolution here of an animal-fungi rela-
tionship also revealed a faster rate of change (on average)
in fungi that resulted in slightly younger (~16%) diver-
gence times than reported previously [24]. We attribute
the overall consistency among methods to the large size of
the data sets and the use of rate tests to eliminate proteins
showing substantial rate variation among taxa. It is
known that all molecular clock methods, and especially
local clock methods, perform best with the largest data
sets [14-16], and greater differences are likely to be
encountered when a small number of genes are used and
when large rate differences are present.

Tests of the calibrations
We performed a "consistency test" [20] on our major sec-
ondary calibration of 964 Ma for the vertebrate-arthropod
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divergence to determine if it was consistent (reciprocally)
with the primary calibration of 310 Ma; in this case, T1
(vertebrate-arthropod divergence) = 310 × (d(vertebrate-
arthropod)/d(bird-mammal)) and T2 (bird-mammal
divergence) = 964 × (d(bird-mammal)/d(vertebrate-
arthropod)). Of 120 rate constant proteins, 118 (98.4%)
showed T1 > T2, thus exhibiting high consistency. In the
second half of the test, using the supergene matrix of the
82 rate constant proteins, we compared T2 (317 ± 29 Ma)
with the primary calibration (310 Ma) and found it to be
within one standard error, thus also showing high consist-
ency. The other two secondary calibrations (animal-fungi
and animal-plant) also were found to be consistent using
the reciprocity test. For animal-fungi, 87/89 (97.8%) rate
constant proteins were consistent with the vertebrate-
arthropod divergence, and the corresponding T2 value
(952 ± 56 Ma) was within one standard error of 964 Ma.
For animal-plant, 132/143 (92.3%) rate constant proteins
were consistent with the vertebrate-arthropod divergence,

and the corresponding T2 value (989 ± 76 Ma) was within
one standard error of 964 Ma.

To explore the effect of alternative fossil calibrations, we
estimated the vertebrate-arthropod divergence time using
our largest data set with expanded taxonomic representa-
tion (43 proteins, 19,183 amino acids, 8 taxa) and a diver-
sity of vertebrate and non-vertebrate fossil constraints
(lower bounds). The constraints were Drosophila-Anopheles
(250 Ma), Homo-Mus (65 Ma), vertebrate-arthropod (540
Ma), Saccharomyces-Shizosaccharomyces (400 Ma) and ani-
mal-plant (1200 Ma) [12,25,26]. These constraints are
less robust than the bird-mammal calibration (310 Ma),
involve smaller numbers of proteins, and probably repre-
sent greater underestimates of the true divergence. None-
theless, the Bayesian (SGLDT) and Penalized likelihood
(SGLPL) methods yielded vertebrate-arthropod time esti-
mates of 823 ± 167 and 1289 ± 206 Ma (respectively), still
considerably predating the expected time (540 Ma) based
on the animal fossil record. Eliminating the two vertebrate

Phylogenetic relationships of selected eukaryotesFigure 1
Phylogenetic relationships of selected eukaryotes. For each data set (column), all taxa are represented in all proteins. 
Support values are listed for the three methods (maximum likelihood, minimum evolution, Bayesian inference) and correspond 
to the node indicated by the arrow (and bolded group) for each tree.

Proteins:
Amino acids:

Maximum likelihood:
Minimum evolution:

Bayesian inference:

39
14,473
100%
100%
100%

105
38,492
100%
100%
100%

73
27,497
100%
100%
100%

151
75,287
100%
100%
100%

19
5,391
64%
85%
100%

6
3,195
100%
100%
100%

Animals
Fungi
Plants
Giardia
Outgroup

Animals
Fungi
Plants
Euglenozoans
Outgroup

Animals
Fungi
Plants
Alveolates
Outgroup

Animals
Fungi
Plants
Outgroup

Animals
Fungi
Plants
Red Algae
Outgroup

Animals
Choanoflagellate
Fungi
Plants
Outgroup

4
2,103
92%
98%
100%

Animals
Fungi
Plants
Alveolates
Euglenozoans
Giardia
Outgroup
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fossil constraints resulted in similar time estimates (816 ±
173 and 1285 ± 206 Ma, respectively).

Increase in cell types through time
The maximum cell types of organisms at different time
periods are shown in Fig. 3, using data from living organ-
isms and estimates of cell types in common ancestors
(Table 2). The origin of life and divergence of archaebac-
teria and eubacteria were set at 4000 Ma and the origin of
eukaryotes at 2700 Ma [27,28], although earlier values for
those events would not affect the overall trend, showing a
baseline of about 2 cell types in prokaryotes. The results
show an increase beginning about 2500 Ma to ~10 cell
types at 2000 Ma, and then a second increase from 10–50
between 1500-1000 Ma (Fig. 3).

Discussion
Until the late Proterozoic (~600 Ma), oxygen levels
remained low [29], probably limiting the size of eukaryo-
tes, except in photosynthetic algae. However, such algae
would not have occurred prior to the origin of plastids
(approximately 1600-1500 Ma; Fig. 2) unless they
acquired photosynthetic abilities through independent
symbiotic events. This would argue against the interpreta-
tion of the older (>1600 Ma) fossils of "Grypania" as pho-
tosynthetic eukaryotic algae [30] and supports their
interpretation as colonial prokaryotes [31].

The most frequently used measure of organismal com-
plexity has been the number of cell types [1,2,32]. Other
possible measures were not deemed useful (e.g., organism

Table 1: Estimates of divergence time among eukaryotes

Nodea Comparison Proteinsb Amino 
acids 
(MG)

Divergence time estimates (Ma) from different methodsc

Total MG SG MGGLS MGLLS SGGLS SGLLS SGLDT SGLPL Summary

5 Arthropoda vs. 
Vertebrata

151 120 82 49,644 1,070 ± 101 964 ± 132 942 ± 101 908 ± 132 975 ± 86 994 ± 21 976 ± 97 
(786–1166)

6 Cnidaria vs. Bilateria 26 19 17 6,790 1,288 ± 71 1,136 ± 76 1,314 ± 71 1,243 ± 76 1,339 ± 210 1,468 ± 74 1,298 ± 74 
(1153–1443)

7 Porifera vs. 
Eumetazoa

22 19 17 7,090 1,382 ± 151 1,282 ± 122 1,341 ± 151 1,285 ± 122 1,361 ± 211 1,457 ± 54 1,351 ± 120 
(1116–1586)

9 Pyrenomycetes vs 
Plectomycetes

29 18 12 8,952 591 ± 75 559 ± 67 435 ± 75 564 ± 67 654 ± 62 500 ± 19 551 ± 61 
(431–671)

10 Candida vs. 
Saccharomyces

29 21 18 8,918 718 ± 108 714 ± 95 834 ± 108 743 ± 95 725 ± 65 604 ± 14 723 ± 84 
(558–888)

11 Hemiascomycetes 
vs. filamentous 
Ascomycota

51 33 31 11,683 1,071 ± 125 1,031 ± 103 1,066 ± 125 981 ± 103 915 ± 54 826 ± 16 982 ± 94 
(798–1166)

12 Archiascomycetes 
vs. other 
Ascomycota

72 56 45 24,348 1,119 ± 83 956 ± 93 1,056 ± 83 994 ± 93 1,011 ± 37 920 ± 12 1,009 ± 73 
(866–1152)

13 Basidiomycota vs. 
Ascomycota

41 27 19 8,504 1,056 ± 165 1,021 ± 112 969 ± 165 927 ± 112 975 ± 48 862 ± 25 968 ± 116 
(741–1195)

14 Mucorales/
Blastocladiales vs. 
Basidiomycota/
Ascomycota

24 16 15 5,202 1,056 ± 61 1,022 ± 54 921 ± 61 901 ± 54 935 ± 50 845 ± 24 947 ± 51 
(847–1047)

15 Fungi vs. animals 188 92 69 31,362 1,594 ± 106 1,492 ± 46 1,511 ± 106 1,449 ± 46 1,435 ± 225 1,594 ± 24 1,513 ± 66 
(1384–1642)

17 Mosses vs. vascular 
plants

51 47 46 4,898 777 ± 103 702 ± 127 677 ± 103 638 ± 127 1,006 ± 62 742 ± 28 707 ± 98 
(515–899)

18 Chlorophytan green 
algae vs. higher 
plants

74 63 58 14,333 1,055 ± 76 946 ± 145 921 ± 76 901 ± 145 1,138 ± 45 845 ± 22 968 ± 93 
(786–1150)

19 Rhodophyta vs. 
Chlorophyta+Embry
ophyta

50 46 43 8,673 1,465 ± 109 1,449 ± 71 1,507 ± 109 1,382 ± 71 1,445 ± 34 1,319 ± 27 1,428 ± 77 
(1277–1579)

20 Plants vs. animals 188 143 99 60,274 1,554 ± 67 1,524 ± 53 1,486 ± 67 1,502 ± 53 1,708 ± 283 1,878 ± 26 1,609 ± 60 
(1491–1727)

21 Alveolates vs. 
plants+animals+fungi

76 60 44 21,031 2,086 ± 83 1,807 ± 95 2,011 ± 83 1,903 ± 95 1,972 ± 49 2,057 ± 35 1,973 ± 78 
(1820–2126)

22 Euglenozoans vs. 
plants+animals+fungi

99 80 52 27,759 1,968 ± 56 1,887 ± 68 2,018 ± 56 1,863 ± 68 2,010 ± 61 2,020 ± 35 1,961 ± 57 
(1849–2073)

23 Giardia vs. 
plants+animals+fungi

45 32 28 11,251 2,276 ± 202 2,421 ± 258 2,424 ± 202 2,287 ± 258 2,153 ± 69 2,295 ± 51 2,309 ± 194 
(1929–2689)

a-nodes correspond to the eukaryote phylogenetic tree (Fig. 2). Nodes 1–4 are fossil times and nodes 8 and 16 are phylogenetically constrained 
(see legend to Fig. 2) and are not shown. b-MG, constant rate proteins used in multigene analyses; SG, proteins used in supergene (concatenated) 
analyses. c-all error terms, except those for SGLDT, are standard errors of the mean. For SGLDT, the standard deviation is presented, and 
"credibility intervals" (asymmetric) for that method are presented in Supplemental Table 1 (see Additional file 1). Averages of all times and standard 
errors, excluding one outlier (italics), are shown in the column labeled "Summary," along with the 95% confidence interval.
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size, genome size) or do not yet have sufficient data avail-
able from a diversity of eukaryotes (e.g., number of genes,
proteins, transcription factors, introns/exons) for this
analysis [32,33]. With a refined timescale of eukaryote
evolution it is possible to compare the increase in cell
types through time with events in biotic and Earth history
(Fig. 3). Although the specific pattern depends on the
method of reconstructing character change, some general
features are evident. Organisms with more than 2–3 cell
types (the maximum in prokaryotes) appeared relatively
early (~2000 Ma), soon after the surface environment
became oxygenated at 2300 Ma (Great Oxidation Event;
[34]). Later, cell types increased again, from 10 to at least
50 on the animal lineage (1500-1000 Ma). By the early
Phanerozoic (500 Ma), organisms with more than 50 cell
types had evolved. Complexity increased independently
in fungi and plants, although at lower absolute levels than
in animals.

There is less confidence in ancestral cell type estimates in
the period of initial increase (~2000 Ma) and better sup-
port for later estimates (1500-1000 Ma) because of
knowledge of gene and structural homology among dif-
ferent groups of animals. For example, it is possible that
the last common ancestor of alveolates and higher eukary-

otes possessed only one or two cell types rather than the
7–8 predicted in this analysis (Fig. 3; 1973 ± 78 Ma), espe-
cially if the rise in complexity was delayed for some reason
(e.g., origin of plastids). On the other hand, regardless of
when the last common ancestor of protostomes and deu-
terostomes lived (976 ± 97 Ma in this analysis), there is no
doubt that it was a relatively complex (not unicellular)
organism with many cell types.

Some early branching eukaryotes (diplomonads) lack
mitochondria, although it is debated as to whether they
are primitively or secondarily amitochondriate [28].
However, the last common ancestor of mitochondriate
eukaryotes, at 1967 ± 65 Ma (Fig. 2), must have possessed
a mitochondrion. A molecular clock study of prokaryote
and eukaryote genomes [35] arrived at a similar date
(1840 ± 200 Ma) for the symbiotic event leading to the
mitochondrion, using different data, methods, and
approach. This may have been a key event in the rise of
complex life, providing eukaryotes with 18 times more
energy (over glycolysis alone) for cell signaling and other
energy-requiring activities.

Table 2: Estimates of the number of cell types in eukaryotes at different times in past

Group or nodea Age (Ma) Maximum cell types

Squared-change parsimony Linear parsimony

Node 1 310 118 120
Node 2 360 114 120
Node 3 450 104 120
Node 4 520 77 68
Node 9 558 6.1 5
Node 17 717 28.5 26
Node 10 723 3.1 3
Node 14 954 5.7 3
Node 18 956 15.5 9.5
Node 5 974 60 68
Node 13 974 5.7 3
Node 11 985 4.3 3
Node 12 1024 3.7 3
Node 6 1308 33.9 22
Node 7 1355 19.9 16
Node 19 1423 12.7 9.5
Node 8 1450 9.7 3
Node 15 1547 7.3 3
Node 16 1586 6.3 3
Node 20 1624 8.7 8.5
Node 22 1956 7.2 8.5
Node 21 1956 7.2 8.5
Node 23 2291 3.9 2

a-Nodes correspond to phylogenetic tree of eukaryotes (Fig. 2).
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Conclusions
Prior to 2300 Ma, oxygen would not have been widely
available for use as an energy source, even if mitochondria
existed at that time. Therefore, the initial increase in com-
plexity may have been a response to both energy availabil-
ity (oxygen) and the ability to extract it (mitochondria).
The second and more substantial increase in cell types
(1500-1000 Ma) occurred immediately following the
acquisition of the plastid (1600-1500 Ma) (Fig. 3), again
suggesting a relationship with oxygen. Plastids provided
eukaryotes with the ability to generate their own oxygen,
benefiting those species (e.g., initially algae and alveo-

lates) directly and their ecosystem partners (e.g., early ani-
mals and fungi) indirectly.

Methods
Data collection
Nuclear protein sequence data were obtained from the
public databases (NCBI Entrez: http://
www.ncbi.nlm.nih.gov/entrez/) for all species relevant to
each taxonomic comparison, calibration taxa, and out-
groups for rate testing (supplemental Table 2; see Addi-
tional file 2). Initial datasets were screened for orthology
using reciprocal BLAST best hits and manual tree building.
Additional sequences were also generated from the dem-
osponge, Microciona prolifera, for two proteins (enolase
and pyruvate kinase). Total messenger RNA was extracted
and converted to cDNA pools using reverse transcriptase
PCR. Primers were designed from protein sequences avail-
able in the public database (enolase forward: 5' TCCCGY-
GGKAAYCCMACHGTKGAGGT 3', reverse: 5'
GGKAGRATCATRAAYTCYTGCATRGC 3'; pyruvate kinase
forward: 5' TTCTCYCAYGGMWCSYACGAGTAYCA 3',
reverse: 5' CGRAYRAAMGARGCRAASAYCATGTC 3').
Sequences were aligned [36] and regions of ambiguous
alignment were removed when necessary. Neighbor-join-
ing trees were constructed (Poisson model) [37] and
sequences presumed to be non-orthologous, due to exten-
sive rate variation and evidence of gene duplication, were
excluded from further analyses. Short (<100 amino acids)
sequences were omitted.

Phylogenetic analyses
We used a consensus phylogenetic framework based on a
diversity of molecular and morphological studies [21,28].
We also tested six phylogenetic questions with our large
protein alignments. The data sets ranged in size from six
proteins (3195 amino acids) in the choanoflagellate set to
151 proteins (75,287 amino acids) in the animal-fungi
set. All data sets were complete in that they contained all
proteins for all species. These concatenated datasets were
analyzed using maximum likelihood (JTT + gamma
model, quartet puzzling with 1000 steps) [38], minimum
evolution (Neighbor-joining, Poisson + gamma model,
2000 bootstraps, complete deletion) [37], and Bayesian
Inference (JTT + gamma model, 50,000 generations, 4
chains with starting temp = 0.2) [39]. The shape parame-
ters of the gamma distribution for the different phyloge-
netic data sets, estimated from the data [40] were: Giardia
(α = 1.12), euglenozoans (α = 1.23), alveolates (α = 1.18),
multiprotist (Giardia, euglenozoans, alveolates, plants,
animals, fungi) (α = 0.93), animal+fungi (α = 1.198),
plants+red algae (α = 0.85), and animals+choanoflagel-
lates (α = 0.865).

A timescale of eukaryote evolutionFigure 2
A timescale of eukaryote evolution. The times for each 
node are taken from the summary times in Table 1, except 
for nodes 1 (310 Ma), 2 (360 Ma), 3 (450 Ma), and 4 (520 
Ma), which are from the fossil record [25]; nodes 8 (1450 
Ma) and 16 (1587 Ma) are phylogenetically constrained and 
are the midpoints between adjacent nodes. Nodes 12–14 
were similar in time and therefore shown as a multifurcation 
at 1000 Ma; likewise, nodes 21–22 are shown as a multifurca-
tion at 1967 Ma. The star indicates the occurrence of red 
algae in the fossil record at 1200 Ma, the oldest taxonomi-
cally identifiable eukaryote [12].
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Calibrations
Times of divergence derived from the fossil record are
always underestimates of the true divergence [11,41].
Even the 1200 Ma date for fossil red algae [12] is
considered to be an underestimate of the origin of that
group because it represents a rare preservation event, hun-
dreds of millions of years older than the next oldest fossil
red algae. Therefore, care must be exercised in selecting
calibration points or constraints from the fossil record for
molecular clock analysis or else they may, in turn, result
in considerable underestimates of divergence time [28].
The divergence of the lineages leading to birds and mam-
mals in the fossil record (310 Ma) provides an unusually
well-constrained calibration point and permits large num-
bers of proteins to be used [14]. A more conservative esti-
mate of 288 Ma [42] was used as the lower bound for the
mammal-bird divergence in the Bayesian and penalized
likelihood analyses; the upper bound was defined by the
presence of stem amniotes in the Mid-Late Visean (~345
Ma) [43]. With this primary calibration, we estimated
three deeper divergences in the eukaryote tree. In turn,
they provided Precambrian calibration points for estimat-
ing other divergences. Well-constrained fossil calibration
points were otherwise unavailable for the Precambrian.
Secondary calibrations minimize the difference between
the calibration point and the divergence to be timed,
thereby increasing the number of applicable genes and the
overall precision of time estimates. For example, genes

that show a difference of more than one or two substitu-
tions in a young calibration event (e.g., between two
mammals) usually will be evolving too quickly to be
alignable or useful for timing deep divergences in eukary-
otes. Also, large extrapolations can exaggerate any biases
that might exist. Therefore, establishing anchor points or
secondary calibrations in the Precambrian permits more
genes to be used and reduces the biases caused by large
extrapolations.

Divergence time estimation
Because the coefficient of variation of time estimates is
large for small numbers of genes [14], we used a mini-
mum of 20 genes for each divergence. We chose eighteen
divergences among major lineages of eukaryotes, includ-
ing some analyzed previously [24]. To increase the
number of genes available for early branching animals, we
sequenced the cDNAs of two genes (enolase and pyruvate
kinase) in a poriferan (Microciona prolifera) and added
those to the assembled data. We subjected all data to glo-
bal (constant rate) and local (rate variation among line-
ages) clock methods, including Multigene Global Least
Squares (MGGLS) [14], Multigene Local Least Squares
(MGLLS) [44], Supergene Global Least Squares (SGGLS)
[17], Supergene Local Least Squares (SGLLS), Supergene
Local Divtime (SGLDT) [15], and Supergene Local Penal-
ized Likelihood (SGLPL) [16]. The first four (least squares)
methods are distance based, SGLDT is a Bayesian method,

Increase in the maximum number of cell types throughout the history of lifeFigure 3
Increase in the maximum number of cell types throughout the history of life. Data points at time zero are from liv-
ing taxa [1-3,50]; earlier data points were estimated with squared-change parsimony (solid circles) and linear parsimony (hol-
low circles) [51] using the molecular timetree (Fig. 2). The origin of life and divergence of archaebacteria and eubacteria were 
set at 4000 Ma and the origin of eukaryotes at 2700 Ma [27,28], although earlier values for those events would not affect the 
overall trend. We follow McShea [4] in using maximum values at any given time and assuming that decreases do not occur. 
Dashed line shows an alternate (conservative) interpretation based on uncertainty as to the level of complexity of ancestors of 
early branching eukaryotes.
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and SGLPL is a semi-parametric likelihood method. Multi-
gene methods treat each gene separately whereas super-
gene methods use concatenations of genes [19,41].

All proteins were tested for rate constancy [45,46]; those
rejected at the 5% significance level were excluded from
timing analyses. Gene-specific and supergene gamma
shape parameters (α) were calculated [40] and used for
distance and time estimation [45]. For MGGLS, MGLLS,
SGGLS, and SGLLS methods, gene- or supergene-specific
rates of sequence change were estimated using linear
regression (y-intercept fixed through the origin) from one
or more calibrations and applied to the intergroup dis-
tance estimates to produce gene- or supergene-specific
times. The mode was used as the measure of central ten-
dency in the multigene analyses due to the sensitivity of
the mean to extreme values [47]; standard errors of the
mode were obtained with bootstrapping (10,000 replica-
tions); outliers were trimmed for the supergene data sets.

The SGLDT method was performed using Divtime5b [15];
maximum likelihood branch lengths were calculated
under a JTT model using an accompanying program, EST-
BRANCHES. The means of the prior distributions ("pri-
ors") for the rate parameter and the root time (rt and t,
respectively) were calculated for each dataset (see Supple-
mental Table 1 for parameters). Calibration nodes were
constrained using the 95% confidence interval of the sec-
ondary calibrations (as discussed previously). Divergence
time "posteriors" and their 95% credibility intervals were
recorded for each dataset. The SGLPL method was per-
formed in R8S version 1.6 [48] with maximum likelihood
branch lengths calculated under a PC+gamma model
[40]. A cross-validation procedure [16] was used to obtain
the optimal smoothing parameter for each dataset. One
hundred bootstrapped datasets were generated to obtain
the mean and error on divergence time estimates for each
dataset [40,49]. While it is possible to constrain nodes
using penalized likelihood, we found that the use of con-
straints forced the method to overestimate extrapolations
and underestimate interpolations (data not shown). For
this reason we chose to use fixed calibrations to estimate
divergence times with penalized likelihood.

Estimation of ancestral numbers of cell types
The maximum numbers of cell types in major groups of
living organisms were obtained from the literature [1-
3,50]: Mammalia (120), Reptilia (120), Amphibia (120),
Actinopterygii (120), Arthropoda (69), Agnatha (67), vas-
cular plants (44), mosses (26), Cnidaria (22), Porifera
(16), red algae (14), alveolates (14), Pyrenomycetes (9),
Hymenomycetes (9), Plectomycetes (9), chlorophytes
(5), Saccharomyces (3), Mucorales/Blastocladiales (3),
amoebozoans (3), Candida (2), Choanoflagellata (2),
Euglenozoans (2), diplomonads (2), eubacteria (2),

archaebacteria (2), and Archiascomycetes (1). These were
used to estimate the maximum number of cell types of
common ancestors. This was accomplished with linear
and squared change parsimony [51] and the phylogenetic
relationships of the groups. Linear and squared change
parsimony are preferred over other more complicated
methods when all species are extant (as they must be here,
for accurate counts of cell types) [52]. Linear parsimony
yields more conservative (in this case, lower) estimates
than squared change parsimony when a trend is present.
For some nodes, linear parsimony yields a range of values;
in those cases we followed Webster and Purvis [52] in
using the midpoint of the range. The two multifurcations
in Fig. 2 were used with squared-change parsimony. Lin-
ear parsimony cannot be used with multifurcations and
therefore the fungal multifurcation was resolved as (Muc-
orales/Blastocladiales (Hymenomycetes (Archiascomyc-
etes ((Candida, Saccharomyces), (Plectomycetes,
Pyrenomycetes))))) and the basal protist multifurcation
was resolved as (Diplomonads (Euglenozoans (Alveo-
lates, other eukaryotes))); alternative resolutions did not
affect the trend in cell type number.
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