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Abstract
Background: The binding sites of sequence specific transcription factors are an important and
relatively well-understood class of functional non-coding DNAs. Although a wide variety of
experimental and computational methods have been developed to characterize transcription factor
binding sites, they remain difficult to identify. Comparison of non-coding DNA from related species
has shown considerable promise in identifying these functional non-coding sequences, even though
relatively little is known about their evolution.

Results: Here we analyse the genome sequences of the budding yeasts Saccharomyces cerevisiae, S.
bayanus, S. paradoxus and S. mikatae to study the evolution of transcription factor binding sites. As
expected, we find that both experimentally characterized and computationally predicted binding
sites evolve slower than surrounding sequence, consistent with the hypothesis that they are under
purifying selection. We also observe position-specific variation in the rate of evolution within
binding sites. We find that the position-specific rate of evolution is positively correlated with
degeneracy among binding sites within S. cerevisiae. We test theoretical predictions for the rate of
evolution at positions where the base frequencies deviate from background due to purifying
selection and find reasonable agreement with the observed rates of evolution. Finally, we show how
the evolutionary characteristics of real binding motifs can be used to distinguish them from
artefacts of computational motif finding algorithms.

Conclusion: As has been observed for protein sequences, the rate of evolution in transcription
factor binding sites varies with position, suggesting that some regions are under stronger functional
constraint than others. This variation likely reflects the varying importance of different positions in
the formation of the protein-DNA complex. The characterization of the pattern of evolution in
known binding sites will likely contribute to the effective use of comparative sequence data in the
identification of transcription factor binding sites and is an important step toward understanding
the evolution of functional non-coding DNA.
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Background
Although non-coding DNA makes up the majority of
most eukaryotic genomes, relatively little is known about
its function or the nature of the constraints on its evolu-
tion. Here we focus on the evolution of an important and
relatively well-understood class of functional non-coding
sequences, the binding sites of sequence-specific tran-
scription factors.

Transcription factors recognize degenerate families of
short sequences (5–25 base pairs). The binding specifities
of transcription factors are typically represented as con-
sensus sequences or position weight matrices [1] that
summarize their position-specific sequence preferences.
In some cases, such 'motif' models of transcription factor
binding sites can be inferred from genome sequences
using computational methods [2–7].

Despite the absence of a detailed understanding of the
evolution of transcription factor binding sites, the com-
parison of sequences from related species has been used to
identify transcription factor binding sites en masse, with
the guiding hypothesis that functional regulatory
sequences will be more conserved than the surrounding
DNA. Several methods [8–12] have been developed to
identify conserved non-coding sequences that, when
tested, often function as regulatory sequences in vivo
(reviewed in [13]).

Here we characterize the evolution of known transcrip-
tion factor binding sites using the complete genome
sequences of the closely related budding yeasts Saccharo-
myces mikatae, S. bayanus, S. paradoxus [12] and S. cerevisiae
[14]. We limit our focus to the conservation of binding
sites due to purifying selection [15–18], though binding
site turnover [15,16] (the loss and reappearance of bind-
ing sites) and other processes also occur. Preferential con-
servation of transcription factor binding sites has been
observed previously in the genomes of organisms from
bacteria [10,11] to mammals [16–18], and we expect the
same to be true of yeast. In addition to the availability of
complete genome sequences, the budding yeasts are a par-
ticularly appealing system in which to test these hypothe-
ses because of the relative wealth and easy accessibility of
biochemical and genetic information [e.g., [20]].

Characterizing the pattern of evolution within transcrip-
tion factor binding sites allows us to explore the nature of
functional constraints on these sequences. As is well
known for protein sequences [21–23], we expect the pat-
tern of evolution in transcription factor binding sites to
reflect the particular patterns of constraint under which
they function; important regions or residues should be
constrained, while unimportant positions may show fixed
changes. Unlike protein sequences, where the relationship

of the amino acid sequence to the functional constraint is
often difficult to discern, in the case of transcription factor
binding sites, we suggest that the evolutionary constraints
can be interpreted directly with respect to the physical
constraints imposed by the DNA-binding protein.

Protein-DNA interactions are of much interest (e.g., [24–
27]) and an understanding of the evolution of the binding
motifs may provide insight into these interactions. In par-
ticular, it has recently been shown that there is a relation-
ship between the pattern of degeneracy in certain binding
motifs and regions of contact between the DNA and the
binding protein: positions with fewer points of contact in
the structures of protein-DNA complexes show greater
variability among binding sites within a single genome
[28]. If these degenerate positions are less important for
the formation of the protein-DNA complex, they might be
expected to show less constrained evolution, as changes at
these positions have a smaller effect on the relative fitness
of the organism, and therefore may become fixed in the
population by drift with greater probability. Conversely,
changes at positions in the motif that disrupt the recogni-
tion of the binding site by the binding-protein are likely
to be deleterious, and therefore removed from the popu-
lation by purifying selection. This intuition leads to a the-
oretical prediction that the rate of evolution at each
position is a function of the frequencies in the position
weight matrix (analogous to the predictions for protein
sequences found in [29]).

Results
Characterized binding sites show fewer substitutions than 
background DNA
We first sought to verify that functional non-coding
regions evolve more slowly than 'background sequences.'
To do so, we selected several transcription factors for
which there were multiple experimentally validated bind-
ing sites in the S. cerevisiae genome listed in the Promoter
database of Saccharomyces cerevisiae (SCPD[20]), and
compared the rate of evolution within these binding sites
to that of the promoter regions in which they were found.
We measured the rate of evolution in substitutions (i.e.,
inferred nucleotide changes) per site, where 'site' refers to
a single nucleotide position, not the multi-basepair 'bind-
ing sites' of transcription factors. We first looked at Gal4p,
a very well studied Zn[2]Cys[6]  binuclear cluster domain
transcriptional activator [30]. The average rate of evolu-
tion within known Gal4p binding sites is 0.32 (+0.12, -
0.09, n = 119) substitutions per site, substantially slower
than the 0.75 (± 0.03, n = 2760) substitutions per site
observed in the promoters in which these Gal4p binding
sites are found (fig. 1A, 1B compare Gal4 'motif' and
'background.')
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Characterized binding sites evolve more slowly than the promoters in which they are foundFigure 1
Characterized binding sites evolve more slowly than the promoters in which they are found. A. Histogram of the 
rate of evolution (estimated by maximum parsimony) in characterized Gal4p binding sites and randomly chosen sequences of 
the same length (17 basepairs) from the same promoters. B. Differences in the mean rate of evolution in motifs and the mean 
rate in the promoters in which they are found. Grey boxes represent the average in binding sites; unfilled boxes represent the 
average over the promoters in which the motifs are found (see methods). Error bars represent exact 95 % confidence intervals 
for a Poisson distribution.
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To test the generality of this observation, we chose six
other transcription factors representing different types of
DNA-binding domains (see table 1) with relatively many
characterized binding sites in the SCPD database. In each
case there are significantly fewer substitutions (p < 0.05,
1000 bootstraps) in the characterized binding sites than
in the promoters in which they lie (figure 1B), suggesting
that, in general, characterized transcription factor binding
sites evolve more slowly than the surrounding intergenic
sequences. This is consistent with the hypothesis that
these sequences are under functional constraint and their
evolution reflects purifying selection.

Functionally important positions are preferentially 
conserved
In order to further explore the functional constraints on
transcription factor binding site evolution, we computed
the rate of evolution at each position within the motif and
observed that the rate of evolution is not constant over the
binding sites. Some positions in the motif show fewer
substitutions than background, while others do not. For
example, in the Gal4p binding sites positions 1, 2, 3, 15,
16, and 17 show fewer substitutions than do positions 4–
14 (fig. 2, right panel).

Functionally important positions are expected to be under
stronger purifying selection and therefore show stronger
conservation. Indeed, the conserved positions in the
Gal4p binding sites correspond to the points of contact in
the crystal structure of the protein-DNA complex (fig. 2,
right panel) that are required for the recognition of the tar-
get sequence [30].

Another particularly interesting example is the case of
Mcm1p. Although there is no specific base in the consen-
sus at positions 8, 9 and 10, there is a strong A/T bias in
the matrix at these positions and mutagenesis studies [31]
of the binding site have suggested that this is needed to
allow the high degree of bending known to be necessary

for the formation of Mcm1p-DNA complex [32–34]. The
relative paucity of substitutions at positions 8, 9 and 10
(0.37, 0.22 and 0.5 respectively, compared to 0.70 over
the entire promoters) further supports the notion that the
constraint on functionally important positions slows their
evolution.

Positional variation within one genome is correlated to 
variation between genomes
Noting that positions with fewer substitutions seem to
coincide with the positions that are non-degenerate in the
consensus, we constructed position weight matrices using
the characterized binding sites from S. cerevisiae and, in
order to quantify the degeneracy, computed the informa-
tion content at each position. The information content of
a position within a binding site has been shown to corre-
late with the importance of that position in the formation
of the protein-DNA complex [28]. For the transcription
factors used above (fig. 1B), we observe that positions of
high information correspond to positions with fewer sub-
stitutions (e.g., Fig. 3). In 6 of 7 cases we found this corre-
lation (Spearman's rank of -0.70 to -0.84) statistically
significant (p < 0.01), the lone exception being Tbp1p,
where a negative correlation was observed (-0.46), but
was not significant (p = 0.11). (Table  1 & see discussion.)
Thus the sequence variation in characterized transcription
factor binding sites within one genome is directly related
to the sequence variation at individual sites between
genomes.

Site-specific substitution rates are consistent with the 
proportionality of Halpern and Bruno
If the nucleotide frequencies at each position of a position
weight matrix accurately reflect the allowed sequence spe-
cificity for the formation of a functional protein-DNA
complex, it is possible, under several assumptions, to pre-
dict the rates of evolution based on these frequencies, as
has been done using the frequencies of residues in protein
sequences [29]. The underlying intuition is that if, for

Table 1: Correlation between information content and substitutions per site for the experimentally characterized binding sites in the 
SCPD database.

Factor Type of DNA-binding domain 
(YPD)

Number of binding sites 
(SCPD)

Width of motif Spearman's rank correlation p-value

Gcn4p BZIP 15 12 -0.84 <0.001 **
Gal4p Zn[2]Cys[6] zinc finger 10 17 -0.83 <0.001 **
Abf1p Atypical CHC2-type zinc finger 16 12 -0.70 0.005 *
Mcm1p MADS box 35 14 -0.70 0.002 *
Rap1p Myb-like 17 15 -0.72 <0.001 **
Reb1p Myb-like 18 10 -0.81 0.002 *
Tbp1p TATA-binding 15 9 -0.46 0.106

P-values refer to the significance of the Spearman Rank correlation coefficient. * Indicates significance at a per-factor error rate < 0.05. ** Indicates 
significance after Bonferoni correction to keep the global error rate < 0.05, assuming 50 tests were done in total.
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example, at a given position in the motif, a transcription
factor recognizes only guanine, i.e., (fA,fC,fG,fT) =
(0,0,1,0), a mutation to any other nucleotide should pro-
hibit formation of the protein-DNA complex, and there-
fore be deleterious. Such mutations should be removed
from the population and therefore the number of
observed substitutions at such a position is expected to be
very small. Similarly, if the binding protein requires, say,
A or T at a given position with no preference, i.e.,
(fA,fC,fG,fT) = (1/2,0,0,1/2), we expect changes between A
and T to persist in the population, but changes to C or G
to be removed; we should therefore observe somewhat
more substitutions, but still fewer than at positions where
there is no preference at all, i.e., (fA,fC,fG,fT) = (1/4,1/4,1/4,1/

4), and all types of substitutions are permitted. Under sev-

eral assumptions, it is possible to write the following pro-
portionality for the rates of substitution between various
residues and a function of their frequencies ([29] equa-
tion 10 & see methods).

where Rabp is the observed rate of substitution from resi-
due a to residue b at position p, Pab and Pba are the
(position independent) underlying rates of mutation
from residue a to residue b and b to a, respectively, and fap

Comparison of rates of evolution to structures of protein-DNA complexes implies a model for the variation in the rate of evo-lution across binding motifsFigure 2
Comparison of rates of evolution to structures of protein-DNA complexes implies a model for the variation in 
the rate of evolution across binding motifs. The DNA backbone appears as a red helix; proteins appear as linked col-
oured cylinders. We propose that the formation of the protein-DNA complex is the functional constraint that leads to purify-
ing selection, and therefore fewer substitutions at certain positions in the binding motif. Images of protein-DNA complex 
structures are from the Protein Data Bank [47]. Rate of evolution is in substitutions per site (estimated by maximum parsi-
mony) and error bars represent exact 95 % confidence intervals for a Poisson distribution.
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and fbp are the frequencies of residue a and b at position p
in the position weight matrix. The predicted rate of evolu-
tion at each position, Kp, is just the sum of the Rabp times
the probability that that base was observed, i.e.,

In order to test these predictions, we estimated a back-
ground mutation model (Pab) by fitting the HKY85 model
[34] to entire promoter sequences using the PAML pack-
age [35], treating all positions independently (see meth-
ods). Using the seven position weight matrices (fap)
trained on the characterized binding sites (all from S. cer-

evisiae,) and scaling the proportionality by the total
number of changes observed in the motif, we compared
the predicted rates to the observed rates and the results are
shown in figure 4. Although there is quite a bit of variabil-
ity, the observed rates of evolution seem to agree with the
predictions (R2 = 0.67).

Computationally predicted binding sites show similar 
evolutionary properties
There are relatively few transcription factors for which the
number of experimentally characterized binding sites was
sufficient to reliably estimate the information profile and
rate of evolution at each position. To further establish the
generality of these observations we extended the analysis

Association between information profile and rate of evolution in characterized binding sites from SCPDFigure 3
Association between information profile and rate of evolution in characterized binding sites from SCPD. A–D. 
Representative plots of information content and substitutions per site reveal a correspondence between positions of high 
information content and slower rates of evolution. Open symbols represent information content and filled symbols the 
number of substitutions per site (estimated by maximum parsimony). Consensus letters are included below the appropriate 
positions in the motif.
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to include additional factors where some information
regarding the consensus or target genes was available. We
ran the MEME motif-finding program [3] on the promoter
regions of groups of genes that showed similar expression
patterns to the known targets of these factors in microar-
ray experiments to derive models of their binding specifi-
city and identify putative binding sites. As in the
experimentally characterized cases, the rate of evolution
in these binding sites was slower than that of the promot-

ers in which the sequences were found (table 2.) Further-
more, most of the motifs showed the characteristic
correlation between the information content at each posi-
tion and the number of substitutions per site (table 2).

The pattern of evolution may be useful in distinguishing 
real motifs from computational artifacts
A challenge in computational motif detection is that algo-
rithms often identify sequence motifs that do not

Test of the Halpern-Bruno proportionalityFigure 4
Test of the Halpern-Bruno proportionality. Observed rate of evolution versus the predictions based on the nucleotide 
frequencies in the binding motif in S. cerevisiae. Each point represents the predicted and observed rates at a given position in a 
motif. For each factor the proportionality has been normalized by the total number of substitutions observed in the corre-
sponding binding sites. See text for details.
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represent real transcription factor binding sites. For exam-
ple, in addition to the cases described above (table 2),
there were several cases where the motif identified by
MEME was not the binding motif for the factor known to
regulate these genes. We computed the number of substi-
tutions per site as well as the correlation between the
number of substitutions and the information content for
these motifs as well, and found no significant correlations
(Table 3), suggesting that the reported motifs in these
cases may be computational artefacts. It is possible that a
reduction in the average number of substitutions per site,
and a correlation between the information profile and the
substitutions across the motif will prove to be useful heu-
ristics in assessing the support from comparative sequence
data for computationally identified motifs.

In order to further test this idea we ran MEME on the pro-
moters of a group of proposed Crz1p target genes identi-
fied in a recent microarray study [36]. We found that the
resulting motif (figure 5) was on average more conserved
(0.38 subs. per site, n = 297) than the promoters of the
genes in the group (0.65 subs. per site, n = 11832). In
addition, it showed the characteristic correlation between
the information profile and rate of evolution across the
motif (Spearman's rank = -0.78, p = 0.001). Thus, in this
case, the comparative sequence data support the hypothe-
sis that this is a functional binding motif in these genes.

Table 2: Evolution of motifs with known consensus, but binding sites identified by MEME

Cluster Factor Consensus identified by MEME Motif subs. Bg subs. Corr. p-value

Protein folding + Hsf1p TTTTCTAGAAAGTTC 0.14 0.68 -0.42 0.060
Glycolysis + Gcr1p AAATAGAGGAAGCCCA 0.23 0.63 -0.80 <0.001 **
Nitrogen + Gln3p/ Dal80p TCTTATCA 0.39 0.74 -0.78 0.010 *
Gluco-neogenesis + Sip4p (?) CSRE CCGTTTGTCCG 0.33 0.57 -0.84 <0.001 **
G1 phase + Mbp1p Swi6 TTACGCGTTTT 0.22 0.64 -0.67 0.011 *
Respiration + Hap2/3/4p TGATTGGTCCA 0.20 0.67 -0.53 0.048 *
Methionine + Cbf1p ATGTCACGTG 0.13 0.75 -0.49 0.078
Proteasome + Rpn4p ATTTTGCCACCG 0.20 0.73 -0.75 0.002 *
M/G1 transition + Swi5p/ Ace2p AACCAGCA 0.26 0.61 -0.57 0.074
Repressed in Stress ++ (?) PAC ATGCGATGAGCTGAG 0.24 0.71 -0.69 0.006 *
leu/ilv bio-synthesis++ Leu3p GCCGTTTCCGG 0.31 0.70 -0.54 0.044 *
Phosphate +++ Pho4p CCCACGTGCG 0.29 0.65 -0.74 0.005 *
119 positions in all computationally identified motifs -0.60 4e-14 **

Here binding sites are identified by running the MEME program [3] on genes that clustered with targets in micro-array gene expression data. 
Expected consensus sequences (from [20,40] or [7]) are underlined. 'Motif subs.' and 'bg subs.' are the substitutions per site in the binding sites and 
the promoters in which they are found respectively. 'Corr.' and 'p-value' are the Spearman's rank correlation coefficient and the associated p-value 
between the rate of evolution at each position and the information content at each position. * Indicates significance at a per factor error rate of < 
0.05. ** Indicates significance after Bonferoni correction for a global error rate < 0.05, assuming 50 tests were done in total. (?) indicates uncertainty 
as to the identity of the binding protein. + indicates clusters taken from hierarchical clustering [40] of yeast data from the Stanford Microarray 
database [42], ++ indicates clusters taken from hierarchical clustering of 300 genetic perturbations [43] and +++ indicates clusters taken from 
hierarchical clustering of 64 control experiments [43]

Table 3: Motifs identified by MEME that do not correspond to the expected consensus sequences for the transcription factors thought 
to be regulating the cluster.

Cluster Factor (expected) Consensus identified by MEME Motif subs. Bg. subs. Corr. p-val

TRX2 + Yap1p AAAAAGAGGAAAAAA 0.80 0.78 -0.21 0.23
CTT1 + Msn2/4p GAAAAAAAAAAAAAA 0.51 0.67 0.13 0.67
Transport ++ Pdr1/3p AAAGAGAGAAAAAAA 0.57 0.69 0.20 0.76
Ergosterol bio-synthesis++ Upc2p/ Ecm22p ATCTTTTTTTTTTTT 0.81 0.55 0.06 0.58
60 positions in background sequence 0.08 0.73

These motifs do not show the characteristic correlation with rate of substitution or the substantial decrease in substitution rate observed for the 
computationally identified motifs with the expected consensus. + indicates clusters taken from hierarchical clustering of yeast data from the 
Stanford Microarray database [42], ++ indicates clusters taken from hierarchical clustering of 300 genetic perturbations [43].
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Discussion
Motifs are conserved on average, but individual binding 
sites are not perfectly conserved
We confirm an important motivating assumption of com-
parative sequencing projects: the rate of evolution within
functional non-coding sequences elements is slower than
the surrounding intergenic DNA (fig. 1). While this means
that on average binding sites are conserved, it is important
to note, however, that in no case was the average number
of substitutions over the motif reduced to zero. Since sub-
stitutions do occur in characterized binding sites, simply
searching through alignments for perfectly conserved
segments would not have revealed all the real binding
sites used in this study. Nevertheless, binding sites do
show characteristic patterns of evolution, and it should be
possible to take these into account in attempting to distin-
guish the functional instances of the motif.

Position specific variation in the rate of evolution is 
consistent with models of functional constraint
The observation that the rate of evolution is not constant
over functional non-coding DNA sequences mirrors simi-
lar observations of regional variation in the number of
substitutions per site in peptide sequences; residues that
are more important to the function or structure of the pro-
tein change much less rapidly, presumably because
mutations at these positions are likely to be deleterious,
and therefore do not drift to fixation [21–23]. By analogy
to peptide sequences, the observation that the positions in
functional non-coding DNA with high information con-

tent evolve more slowly is consistent with these positions
being more important for the formation of the protein-
DNA complex, and therefore under more functional con-
straint. Unlike peptide sequences, however, the purifying
selection and accompanying reduction in the rate of sub-
stitution in transcription-factor binding sites seems to be
a relatively straightforward mapping from the physical
interaction of the DNA with the binding protein (as in fig.
2). Since the information content has been shown to cor-
relate with the physical constraints imposed by transcrip-
tion factors on their motifs [28] it is consistent that we
observe significant correlations between the information
profiles and the rate of evolution as well.

The binding sites of sequence specific transcription factors
afford a rare opportunity to test theoretical predictions of
the effects of purifying selection on site-specific rates of
evolution. By assuming the nucleotide frequencies from
position specific weight matrices are the equilibrium
frequencies under the purifying selection imposed on
these sequences, we could make seemingly reasonable
predictions for the rate of evolution at each position
(figure 4). Although we do not have sufficient data to reli-
ably estimate the rates for each type of substitution (e.g.,
A→T vs. A→G,) the results presented here are promising.
The same intuition that allows us to construct position
weight matrices (i.e., that we may average over all the
binding sites to learn the average sequence specificity)
allows us to compute the rate of evolution across the
motif by averaging the changes observed in the individual
binding sites.

Improved understanding of binding site evolution can 
guide the use of comparative data
An accurate understanding of the evolution of functional
regulatory sequences is critical to the optimal use of com-
parative sequence data in the analysis of transcriptional
regulation. Without such an understanding, it remains
difficult to distinguish sequences under functional con-
straint from sequences that are similar because of shared
descent, or to differentiate among the various classes of
conserved non-coding sequences. We believe our observa-
tions linking position-specific variation in the rate of evo-
lution within transcription factor binding sites to
position-specific sequence variation within genomes (and
to structural features of the protein-DNA complex) will be
useful in comparative sequence analysis.

For example, comparative sequence data can be used to
verify the predictions of de novo motif finding algorithms
that have been applied to single genomes, by allowing us
to ascribe increased confidence to predicted motifs that
are also conserved. However, simply assessing whether
motifs are 'present' in other species can be ineffective as
similar sequences are expected to be present in closely

Information and rate of evolution for the recently reported Crz1p motifFigure 5
Information and rate of evolution for the recently 
reported Crz1p motif. This motif shows the characteristic 
pattern of evolution observed for real motifs. Open symbols 
represent information content and filled symbols, the 
number of substitutions per site (estimated by maximum par-
simony.) Consensus letters are included below the appropri-
ate positions in the motif.
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related species because they have had insufficient time to
diverge or as the result of other functional constraints. We
propose that the patterns of evolution we observe for
known motifs – their conservation relative to flanking
sequences and the correlation between position-specific
rate of evolution and intragenomic degeneracy – can more
accurately distinguish motif models that correspond to
bona fide transcription factor binding sites from computa-
tional artefacts (compare tables 2 and 3). As a demonstra-
tion we show that comparative sequence supports the
motif reported in [36] (fig. 5). Verification of computa-
tionally predicted motifs may be an immediate practical
application of our observations and computational meth-
ods that incorporate models of binding site evolution
should take more effective advantage of comparative
sequence data.

More generally, just as faster evolution at synonymous
sites is an evolutionary signature of protein coding regions
[21–23], the pattern of position-specific variation in
evolutionary rates within binding sites can be thought of
as an evolutionary signature of transcription factors. We
have shown here how these evolutionary signatures might
be used to identify sequences or motifs that collectively
have the properties of transcription factor binding sites.
With sufficient sequence data, it should ultimately be pos-
sible to estimate the rate of evolution at every base in a
genome, and to identify individual short sequences with
the evolutionary characteristics of functional transcription
factor binding sites.

Conclusions
We show that the rate of evolution in characterized and
predicted transcription factor binding sites is slower than
that of the intergenic regions in which they are found. In
addition we show that there is position specific variation
in the rate of evolution across these binding sites. We
show that this variation is correlated to the variability in
the sequence specificity for that factor and can be mod-
elled by assuming that purifying selection acts to maintain
these specificities. Together this suggests that the variation
in the rate of evolution is a direct reflection of differences
in the strength of purifying selection due to differing phys-
ical constraints on the DNA imposed by the interaction
with the binding protein.

The characterization of the pattern of conservation over
known binding sites is an important step in
understanding the evolution of functional non-coding
DNA, and perhaps also towards the general understand-
ing of protein-DNA interactions. Our observations should
contribute to the effectiveness of comparative non-coding
sequence analysis.

Methods
Rates of binding-site and intergenic evolution
Global alignments of intergenic regions from S. mikatae,
S. paradoxus and S. bayanus were computed using clustalw
(as described in [12]). Using the accepted species tree
(Sbay, Smik,(Spar, Scer)) [8,12], we computed the mini-
mal number of changes needed for each column of the
alignment (the so called cost) using the classical parsi-
mony algorithm (as described in [37]). We included only
alignments where sequence from all four species was
available; regions of ambiguity or missing sequence in the
alignment, were treated as gaps. The average rate of evolu-
tion within a binding site (in fig. 1A) is the sum of the cost
at each position in the binding site divided by its length.
The average rate of evolution for a motif (in fig. 1B) is the
sum of the cost in the binding sites divided by the total
number of ungapped positions in the binding sites.
Although gaps are not expected in alignments of func-
tional binding sites, we allow for them so that we can
apply the same metrics to binding sites as the surrounding
sequences. The background histogram in figure 1A was
made by calculating the average rate of evolution in ran-
domly drawn 17-mers from the promoters of the genes
containing the binding sites. The rate of background evo-
lution (in fig. 1B) is the sum of the cost over the entire
alignment divided by the total number of ungapped posi-
tions. The average rate of evolution at each position is the
sum (over all the binding sites) of the cost at that position
divided by the total number of binding sites that have no
gap at that position. Although a maximum likelihood esti-
mator for the number of substitutions per site in DNA
sequences has been constructed [38] its performance is
expected to be similar to parsimony methods for short
evolutionary distances as are considered here.

We note that the rate of background evolution differed
significantly among the groups of genes examined (char-
acterized targets, expressions clusters.) We address this
variation, and examine possible explanations in another
manuscript (Hunter B Fraser, AMM and MBE in
preparation).

Statistics
A Poisson distribution for the number of substitutions
was used when reporting confidence intervals, and for
error bars in figures 1 and 2, because this is thought to be
a reasonable model for the underlying distribution for
neutral substitution events.

The significance of difference of means between motifs
and background was estimated by bootstrapping. We ran-
domly selected sequences the same length as the motif
(with replacement) from the upstream regions in which
they were found, until we had the same number as we had
characterized binding sites. We then calculated for these
Page 10 of 13
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samples the mean number of substitutions exactly as for
the characterized binding sites. Finally, we repeated this
process 1000 times, and asked how often we observed an
evolutionary rate smaller than for the characterized sites.
Both the rate of evolution in promoter sequences and the
locations of yeast transcription factor binding sites are
known to show positional preferences ([39], AMM and
MBE, unpublished data). To control for possible effects of
these biases, we also calculated the number of substitu-
tions in sequences of the same size as the motif 5 basepa-
irs away on either side of the binding sites, for each of the
factors shown in fig. 1B. To be as conservative as possible,
we simply computed the probability of observing the
number of changes in the binding sites out of the total
number of changes in the binding sites and the flanking
regions with no assumptions about the underlying distri-
bution of the changes (using the hypergeometric distribu-
tion) and found that there were fewer substitutions in the
binding sites than in the flanking regions (data not
shown).

Identification of binding sites and construction of position 
weight matrices
Characterized binding sites were taken from SCPD [20]
for Gal4p (n = 10), Mcm1p (n = 35), Abf1p (n = 16), and
Rap1p (n = 17). For some of the short Gcn4p (n = 15),
Reb1p (n = 18) and Tbp1p (n = 15) sites up to 5 flanking
base pairs were included. Although SCPD lists additional
binding sites for many of these factors, we excluded many
of these because they were redundant listings of binding
sites that have been characterized multiple times (e.g.,
STE6 has 4 Mcm1p binding sites listed, but these are actu-
ally the same two listed twice) or they were found in diver-
gently transcribed genes, and were listed independently
for both genes (e.g., GAL1 and GAL10 both have 4 Gal4p
binding sites listed, but in fact they share these sites). For
each factor, the sequences were aligned using the MEME
program [3] and the 'letter-probability-matrix' from its
output was used as the position weight matrix.

SCPD lists binding sites for many other regulatory ele-
ments and transcription factors, most of which have few
sites, or have sites from a small number of target genes.
For each transcription factor, we attempted to identify
groups of genes with similar expression patterns as the
known target genes, as well as known target genes of other
transcription factors (from [40]). These groups were then
chosen by hand from hierarchical clustering [41] of
expression data from various experimental treatments and
over the cell-cycle, downloaded from the Stanford Micro-
array Database [42] or from 300 publicly available dele-
tion and drug treatment experiments or 64 control
experiments [43]. We ran MEME on the putative promoter
regions of genes in expression clusters with the following
parameters: motif width was allowed to range between 8

and 16, 'zoops' and 'tcm' models were both tried for each
case, and both strands of the promoter were searched.
When the 'tcm' model was used, we specified between 0.5
n and 2 n for the number of occurrences where n is the
number of genes in the cluster. For MEME runs, promoter
regions were taken to be the 600 basepairs upstream of the
translation start (basepairs in other coding regions were
excluded), except in the case of the proteasome and the
repressed stress genes where 300 basepairs were used
because of a positional bias in the location of those bind-
ing sites (AMM and MBE unpublished results.) For com-
putationally predicted binding-sites, occurrences were
taken to be those listed in the MEME output, and the 'let-
ter-probability-matrix' was used as position weight
matrix. In the case of Crz1p we used the starting consen-
sus NNNNGGCNCNN, which was reported in [36].

Correlation with information profiles
Information at each position was calculated as

where fbp is the frequency of base b at position p in the
motif, with b ∈ {A, C, G, T}, and p ∈ [1, W] where W is the
width of the motif. Spearman's rank-order correlation
(the linear correlation of the ranks) was computed and the
significance of the correlation coefficient was assigned as
described in [44].

Predictions of the rate of evolution
We follow exactly the derivation for protein sequences
found in [29]. Briefly, if we assume that sites are inde-
pendent, evolution is reversible, and underlying probabil-
ities of mutation are invariant across sites, we can write
the rate of evolution at each position as

Rabp ∝ Pab × Fabp,

where Rabp is the rate of substitution from residue a to res-
idue b at position p, Pab is the rate of mutation from resi-
due a to residue b and Fabp is the probability of fixation of
a mutation from residue a to residue b at position p. If we
assume that the time of fixation is small relative to the
time between fixations, a so-called weak-mutation model
[45], we can use Kimura's equations [46] and write the
following.
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where N is the effective population size and sp is the coef-
ficient of selection at position p. As was noted in [29], if
equilibrium has been reached, i.e., there has been suffi-
cient time for all the possible mutations at that position to
occur and either be fixed or removed, then

where fap is the equilibrium frequency of residue a at posi-
tion p, in our case the frequency in the position weight
matrix. This implies

and therefore

which can be substituted to give the proportionality used
in results.

To fit a background mutation model, we used PAML [35]
to fit the HKY model [34] to the promoters that contain
the characterized binding sites for each factor. We fixed
the alpha parameter at 0 to use a constant rate across sites.
The HKY model accounts for equilibrium frequencies of
nucleotides as well as transition-transversion mutation
bias. The equilibrium frequencies differed from (1/4,1/4,1/

4,1/4), and transitions were more probable than transver-
sions (kappa between 3 and 4.) We also tested the site-
specific predictions for the rate of evolution assuming that
all types of substitutions were equally likely and qualita-
tively the results were very similar (data not shown).
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