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Abstract

Background: The CRISPR/Cas system is known to act as an adaptive and heritable immune system in Eubacteria and
Archaea. Immunity is encoded in an array of spacer sequences. Each spacer can provide specific immunity to invasive
elements that carry the same or a similar sequence. Even in closely related strains, spacer content is very dynamic and
evolves quickly. Standard models of nucleotide evolution cannot be applied to quantify its rate of change since
processes other than single nucleotide changes determine its evolution.

Methods: We present probabilistic models that are specific for spacer content evolution. They account for the
different processes of insertion and deletion. Insertions can be constrained to occur on one end only or are allowed to
occur throughout the array. One deletion event can affect one spacer or a whole fragment of adjacent spacers.
Parameters of the underlying models are estimated for a pair of arrays by maximum likelihood using explicit ancestor
enumeration.

Results: Simulations show that parameters are well estimated on average under the models presented here. There is
a bias in the rate estimation when including fragment deletions. The models also estimate times between pairs of
strains. But with increasing time, spacer overlap goes to zero, and thus there is an upper bound on the distance that
can be estimated. Spacer content similarities are displayed in a distance based phylogeny using the estimated times.
We use the presented models to analyze different Yersinia pestis data sets and find that the results among them are
largely congruent. The models also capture the variation in diversity of spacers among the data sets. A comparison of
spacer-based phylogenies and Cas gene phylogenies shows that they resolve very different time scales for this data set.

Conclusions: The simulations and data analyses show that the presented models are useful for quantifying spacer
content evolution and for displaying spacer content similarities of closely related strains in a phylogeny. This allows for
comparisons of different CRISPR arrays or for comparisons between CRISPR arrays and nucleotide substitution rates.
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Background
Bacteria and Archaea have an adaptive heritable immune
system against viruses, plasmids and other mobile genetic
elements [1,2]. This locus, CRISPR (Clustered Regularly
Interspaced Short Palindromic Repeats), consists of an
array of repeats and unique spacers. The repeats are of
length 21-48 nucleotides depending on CRISPR type and
species. The spacer sequences are 26-72 nucleotides in
length, where the variance of spacer length within one
array is small. The spacer sequences were found to be of
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extrachromosomal origin [3] and are involved in immu-
nity [1,2]. Cas (CRISPR-associated) genes adjacent to the
CRISPR arrays are necessary for the biogenesis of the
CRISPR RNA, for the interference with the target nucleic
acid and for the acquisition of new spacer sequences [4].
Different types of CRISPR/Cas systems exist based on the
set of Cas genes present [5].
Comparisons of the CRISPR array of closely related

strains showed that the CRISPR array undergoes a rapid
evolution that is mainly determined by the gain and loss
of the whole system or of individual spacers [6,7]. In
most cases, spacer addition was observed at the begin-
ning, the ‘leader’ end, of the array [1] and the pattern in
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metagenomic samples suggest that deletion of consecu-
tive repeat-spacer units occurs [6]. Bacterial genomes can
have multiple CRISPR arrays that differ in their dynamics
[7-9]. It was observed that closely related strains can differ
in their spacer content, thus the CRISPR array is used as a
tool for strain typing (e.g., [8,10,11]).
The targeting of extrachromosomal elements by the

CRISPR/Cas system was discovered recently [1,2] and
many questions regarding the functions, mechanisms and
evolution of this locus are still open. This is complicated
by the fact that different CRISPR/Cas systems have dif-
ferent mechanisms and may have different function [4].
Thus computational methods that make predictions are
important to narrow the space of hypotheses that need to
be tested experimentally. For example, self-targeting spac-
ers are not conserved between species and CRISPR arrays
with self-targeting spacers may get inactivated. These
observations exclude the hypothesis of gene regulation by
CRISPR [12].
Using model simulations can provide insights into the

parameters allowingCRISPR existence and into the details
of CRISPR dynamics. One result using population genet-
ics models is that CRISPR is maintained if it provides
immunity to viruses or plasmids even when there is a cost
of having CRISPR [13]. Simulating a spatial model of virus
and host population showed that coexistence is possible
with a CRISPR-based immune system [14]. Furthermore,
a spatially structured environment can lead to interme-
diate array lengths, i.e., the number of spacers has an
optimum between 0 and the number of viruses excluding
the extreme values. Then the lengths are determined by
the spacer insertion rate and by the cost for having spac-
ers not by the total number of phages in the environment
[15]. Modeling coevolution of hosts and viruses results in
the observation that spacers at the leader-distal end tend
to be more conserved, due to selective sweeps, and that
immunity to contemporary viruses is mainly determined
by the most recently acquired spacers [16,17]. In addition,
simulations can find parameter regimes that are impor-
tant for the existence of CRISPR like a threshold on the
viral mutation rate [18].
Our approach differs from the population genetics mod-

els described since it estimates parameters directly from
the array data. We describe the dynamics of the CRISPR
locus over time in diverging populations related by a phy-
logeny. This is the phylogeny of the CRISPR/Cas locus.
Since the locus can be transferred horizontally [19], the
CRISPR/Cas phylogeny does not need to be identical
to the strain phylogeny. There are a few instances of
recombination inside cas genes [20], but in our model,
we exclude recombination in the spacer arrays. The
evolutionary events we model are spacer insertion and
deletion. By using only strains harboring the locus, we
ignore the loss or gain of the whole CRISPR/Cas system.

Mutations inside the CRISPR locus are also not included
in the model, but in data analyses multiple spacers with
sequence similarities can be subsumed into one identity.
Even before the function of the CRISPR/Cas systemwas

clear, Pourcel et al. [8] formulated three observations for
CRISPR evolution by comparing Yersinia pestis arrays:
Random deletions of one or more spacers and repeats;
polarized addition of new spacers; and identical spacers
reflect shared ancestry not independent events. We also
assume that the CRISPR arrays analyzed are homologous
and that each spacer was only inserted once, i.e., all spac-
ers with identical sequence are identical by descent. Thus
we present three models: an unordered model (spacer
content is considered as a set), an ordered model (where
insertion is polarized, i.e., insertions occur at one end
only) and a fragment loss model (where insertion is polar-
ized and successive spacers can get deleted together in a
single event).
Another class of models that take order relationships

into account are gene order models, i.e., they model the
order of genes in the genome over time. Most methods
for evaluating the distance between two gene orders find
the minimum number of rearrangement events between
these genomes. This approach can also be combined with
insertions and segment deletions [21,22]. Probabilistic
methods of rearrangement only model inversions [23,24]
or inversions and transpositions [25]. Multi-gene events
are considered in one model of gene innovation, duplica-
tion and deletion, but ignoring the order of genes on the
genome [26].
Our ordered and fragment loss models are thus differ-

ent from the probabilistic models for gene order since
they capture the properties specific for CRISPR spacer
evolution. We describe our method and investigate its
properties by simulation and application to real world
Yersinia pestis data sets [8,27].

Methods
Models
We describe different models for estimating insertion and
deletion rates from CRISPR arrays. We ignore repeats and
only use the spacer information and their order encoded
in an array. The leader end is displayed on the left (see also
Figure 1). In our models, these arrays evolve by insertion
and deletion events. An overview of the types of insertions
and deletions allowed in the differentmodels can be found
in Table 1. In all models, the waiting time for insertion
events is exponentially distributed with rate λ (Figure 1).
One spacer is inserted for each insertion event.
In the independent loss model only single spacers can get

lost. For each spacer, the waiting time to get lost is expo-
nentially distributed with rate μ. All deletions are inde-
pendent of each other. The corresponding length model
describes the length of the array by a Markov process
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Figure 1 Illustration of the instantaneous rates for an array of
length 3. Leader-proximal end is on the left. The arrows display the
allowed transitions for the fragment loss model. Deletions of length
two are are displayed in red, deletions of length three in green. For
the independent loss model, only the black arrows are allowed
transitions. For the unordered model, the transition with rate λ results
in either 4-3-2-1, 3-4-2-1, 3-2-4-1 or 3-2-1-4 with uniform probabilities.

(Figure 2). In contrast, the full model takes spacer iden-
tities into account. In the independent loss model, a loss
means a transition to length−1 and a gain a transition to
length+1. We analyze two sub-models of the independent
loss model: the unordered model, where there is no posi-
tion information; and the ordered model, where insertion
occurs in a polarized way, i.e., at the end adjacent to the
leader. For simplicity, we refer to this end as the beginning
of the array. The latter model is motivated by the observa-
tion that spacers are usually inserted at the leader end of
the array (e.g., [1]).
In the fragment loss model the position is informative

since insertion occurs in the beginning and subsequent
spacers can get lost together. This model is motivated by
the pattern in metagenomic samples that shows deletion
of consecutive repeat-spacer units [6]. Each possible non-
empty substring of the array is a fragment. Thus fragments
can be overlapping and one spacer inside an array is then
part of different fragments. For example, the array 3-2-1
(Figure 1) consists of the fragments 1, 2, 3, 2-1, 3-2 and 3-
2-1. The fragment 3-2 overlaps with the fragment 2-1 in
the spacer 2. And the spacer 2 occurs in 4 fragments: 2,
2-1, 3-2 and 3-2-1. For each possible fragment, the wait-
ing time to get lost is exponentially distributed with rate

Table 1 Overviewovermodels

Independent loss model Fragment loss model

Unordered Ordered

Insertions Random Polarized Polarized

Deletions Single Single Fragments

A

0 1 2 3

B

0 1 2 3

Figure 2Markov chain representation of the length models.
(A) Independent loss model. (B) Fragment loss model. For clarity,
deletions of length 2 are red, deletions of length 3 are green, and
deletions ≥ 4 are not displayed.

μ, independent of the number of spacers a fragment con-
tains. In the length model, all lengths smaller than the
current length are accessible in a single step (Figure 2).
Since μ has a different meaning in both models, we

emphasize this by using μF for the fragment loss model
(μF affects each possible fragment), and μI for the inde-
pendent loss model (μI affects only single spacers). The
rates are always rescaled such that one event (insertion or
deletion) is expected in time t = 1. This allows for esti-

mating times, but only the ratio ρ = λ

μ
can be estimated.

Again, we distinguish the two models by using ρF = λ

μF

and ρI = λ

μI
. Subscripts are omitted when the underlying

model is clearly stated.
Now,we present the stationary distribution of the length

models and the transition probabilities of the full model
necessary to formulate an estimation approach under each
of these models. Afterwards details of the estimation
approaches are described.

Independent loss models
Length model The independent loss length model is a
Markov process known as an M/M/∞ queuing model
[28] (Figure 2A). In this queuing model, customers
(i.e., spacers) arrive according to a Poisson process with
rate λ. They are immediately served and exit after an
exponential waiting time with rate μ. The stationary dis-
tribution of the number of busy servers (i.e., the number
of spacers in the array), is a Poisson distribution with
rate ρ:

p(n|ρ) = e−ρ ρn

n!
, where n is the array length. (1)



Kupczok and Bollback BMC Evolutionary Biology 2013, 13:54 Page 4 of 18
http://www.biomedcentral.com/1471-2148/13/54

0 5 10 15

0.
00

0.
10

0.
20

Length

F
re

qu
en

cy

ρI=2.4
ρF=10
ρI=4.8
ρF=50
ρI=6.4
ρF=100

Figure 3 Stationary distribution of the length models. Subscript I represents the independent loss model and subscript F the fragment loss
model. ρs of the same color result in the same mean length, i.e., they are corresponding ρs.

Transition probabilities Given an ancestor s0 and a
descendent s1, m spacers are shared, d spacers are unique
to s0 and j spacers are unique to s1. The transition prob-
abilities of changing from s0 to s1 use the property that
inserted, preserved and deleted elements are independent
of each other:

T(s0 → s1|t, λ,μ) = M(m|t,μ)D(d|t,μ)I(j|t, λ,μ)

Where the probability of preservingm spacers in time
t isM(m|t,μ) = e−mμt ,

the probability of loosing d spacers in time t is

D(d|t,μ) = (1 − e−μt)d ,
the probability of inserting j spacers in time t is

I(j|t, λ,μ) = e−ρ(1−e−μt)
(
ρ

(
1 − e−μt))j

j!
.

(2)

M and D follow directly from the exponential model.
I is known from queuing theory [28]. The probability of
inserting j spacers is the probability of observing j spacers
after time t when there were 0 spacers at time 0. That is
the integration over all possible paths leading to j, includ-
ing paths where spacers were inserted and lost and thus
never observed.

Fragment loss models
Length model The stationary distribution of the length
model (Figure 2B) is given by

p(n|ρ) = (n + 1)(n + 2)

2ρ
n∏

i=0
(
(i+1)(i+2)

2ρ + 1)
. (3)

Equation (3) can be solved from the conditions that in
stationarity the flow into a state equals the flow out of that

state and that the probabilities of such events necessarily
sum to 1 (see Additional file 1).
For each ρF there is a corresponding ρI that has the same

expected length. We find that for corresponding ρs the
fragment loss model has a higher variance of the length
distribution than the independent loss model (Figure 3).

Transition probabilities Given an ancestor s0 and a
descendent s1, we segment them into independent pairs
(Figure 4). Note that this segmentation is different from
the fragments described above. Fragments are all possible
substrings of one array, but segments are calculated using
two arrays. Each segment is either an inserted, deleted
or preserved segment. Segments are of maximal length,
i.e., two consecutive segments are of different type. See
Figure 4 for an example of segments resulting from a
pair of arrays. In contrast to the independent loss model,
this segmentation is an approximation since it ignores
the probability of deletion events spanning multiple seg-
ments. The segmentation is, however, necessary to factor-
ize the transition probabilities. The transition probability
is then the product over the segment probabilities.

6 12345

7 169 8 5

Insertion and 
unobserved 
elements

Deletion

Preserved
elements

Ancestor

Descendant

Time

Figure 4 Overview of the array segmentation for the likelihood
calculation under the fragment loss model. This segmentation
results in the inserted fragment 9-8-7, the preserved fragments 6-5
and 1 and the deleted fragment 4-3-2.
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Preserving a fragment of lengthm has probability

M(m|t,μ) = e−
m(m+1)

2 μt .
Deleting a fragment of any length has probability
D(t,μ) = 1 − e−μt .

Inserting i spacers has probability

I(i|t, λ,μ) = 2i+1e−λtρi

×
i+1∑
k=1

[
(−1)k−1 (1 + 2k)k(k + 1)

2(i − k + 1)! (i + k + 2)!

×
e−

k(k+1)
2 μt

(
1 − (i+2)(i+1)−(k+1)k

2ρ

)

1 + k(k+1)
2ρ

)

⎤
⎦

+ (i + 1)(i + 2)

2ρ
i∏

k=0

[
(k+1)(k+2)

2ρ + 1
] .

(4)

As before, the probability of inserting i spacers includes
unobserved spacers that were inserted and lost again.
These equations were found by integration over all possi-
ble paths in Mathematica 8.0 [29].
For example, in Figure 4 the transition probability is

I(3|t, λ,μ) × M(2|t,μ) × D(t,μ) × M(1|t,μ).

Estimation
Maximum likelihood function
We describe a maximum likelihood approach to estimate
rates and times of spacer insertions and deletions, given a
set of ordered spacer arrays from different strains. Since
we do not have phylogenetic information, we consider
each pair of arrays and their possible common ancestors.
Formally, the maximum likelihood estimate for a spacer

set S with k=|S| is
(ρ̂ , t̂) = argmax L(ρ, t|S) with L(ρ, t|S)=

∏
i=1,...,(k2)

L(ρ, ti|si),

(5)

where s is the list of all different pairs of S and t is the
corresponding list of pairs of times.
The likelihood of a pair of spacer arrays (s1, s2) with

times (t1, t2) is then

L(ρ, t1, t2|s1, s2) =
∑

ancestors a
q(a|λ,μ)T(a → s1|t1, λ,μ)

× T(a → s2|t2, λ,μ),
(6)

where λ and μ are computed from ρ given the constraints
λ
μ

= ρ and the expected number of insertions and dele-
tions in time 1 is 1. Then, q(a|λ,μ) is the probability of
observing a, T(a → b|t, λ,μ) is the transition probability

of changing from a to b in time t given insertion rate λ and
deletion rate μ.
If the pair has no overlap, i.e., no common spacers, we

assume that the time from the common ancestor is long
enough such that the transition probabilities approach the
stationary probabilities. Then the likelihood function can
be simplified by using the fact that the probability of the
whole ancestor space is 1. We find that only the lengths
are informative for estimating ρ:

L(λ,μ|s1, s2) =
∑

ancestors a
q(a|λ,μ)p(n1|ρ)p(n2|ρ)

=p(n1|ρ)p(n2|ρ), with n1=|s1|and n2=|s2|.
(7)

Note that q and p are different but related by the following
constraints: The sum of all q(a) with |a| = n is p(n) and
q(a) = q(b) if |a| = |b|.
Optimization
We are interested in both the estimate of ρ, ρ̂, and the
estimation of the divergence times. For a pair, we denote
the estimated time between two arrays as τ̂ = t̂1+ t̂2. τ for
a phylogeny or for a collection of pairs denotes the average
of τ over all pairs.
Overview of the estimation approach:

1. Estimate a starting ρ from the length model by
maximum likelihood. The likelihood function is
Lstart(ρ) = ∑

arrays s
p(|s| |ρ), where |s| is the length of s

and p is the stationary distribution of the length
model.

2. For each pair of spacers with overlap, generate the
possible ancestors: Ancestral arrays can be arbitrarily
large, but the probability of observing a certain
length is given by p(n). For practical reasons we do
not consider ancestors whose length is outside the
central 99% of the stationary distribution given by ρ

estimated in step 1, since they would have a
negligible contribution to the likelihood. In detail, the
length l1 where the cumulative distribution exceeds
0.005 is the minimum ancestor length and the length
l2 where the cumulative distribution exceeds 0.995 is
the maximum ancestor length. Then the possible
ancestor lengths n are between l1 and l2: l1 ≤ n ≤ l2.

3. (a) For all pairs with overlap, estimate the times
with fixed ρ. It is possible to iterate through
the pairs and estimate their times
independently of the other pairs. The
estimation of both times is iterated
alternatingly until the likelihood has
converged.

(b) Estimate ρ with fixed times using L(ρ|t, S).
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(c) Check if the log-likelihood of the estimated
parameters has converged, then return the
estimated parameters, else repeat step (a)
with the new parameters.

All three models are analyzed in this computational
framework. All optimization steps only optimize one
parameter and use Powell’s method from the python pack-
age scipy [30]. The python package mpmath is used
for high-precision computing [31] that is necessary to
compute the probability functions accurately.

Ancestors
Here, we describe for each of the models how we generate
the ancestors in step 2 above. Thereby we must account
for unobserved spacers, that are not present in the data
but in ancestral lineages. We overcome the problem of the
infinite state space by ignoring the identity of unobserved
spacers. For example, there may be four unobserved spac-
ers, each of them gets a new unique name, but then no
other four unobserved spacers with other names or an
other order are considered.

Unordered model Given a pair of arrays s1 and s2, they
have c spacers in common, d1 are unique to s1 and d2 are
unique to s2. Then all n between min(c, l1) and l2 are gen-
erated. When length n is generated, enumerate all i, j, u
such that c + i + j + u = n, i ≤ d1 and j ≤ d2. Then for
ancestor a, there are c common spacers, i only occur in s1, j
only occur in s2 and u are unobserved (they are lost in both
lineages). Since this ancestor comprises multiple spacer
identities, we assign a weight to it, w(a) = (d1

i
) × (d2

j
)
.

The weights for each n are rescaled such that they sum to
1, i.e., the rescaled weight ws is ws(a) = w(a)∑

b,|b|=|a|
w(b) . Then

q(a) = ws(a)p(|a|).

Ordered model Given a pair of arrays s1 and s2, find the
first shared spacer. The ancestor must contain this spacer
and all subsequent spacers from both arrays, these are c
spacers in total. There are d1 and d2 spacers before the
first shared spacer in s1 and s2, respectively. With these
new definitions of c, d1 and d2, the method from the
unordered model is applied.

Fragment loss model For the fragment loss model, the
ancestors must fulfil several constraints given by the order
in the observed arrays. Since all shared ancestors are iden-
tical by descent and insertions occurs only in the begin-
ning, all spacers from the first shared spacer on must be
present in the ancestor. Thereby the order of spacers must
be preserved. Enumerating the ancestors is best explained
with an example. Consider the arrays s1 =8-7-6-4-3-2-1,
s2 =11-10-9-7-6-5-2.

• 7 is the first shared spacer.
• The set of spacers necessarily present in the ancestor

is the union of all spacers after the first shared spacer:
{1, 2, 3, 4, 5, 6, 7}.

– Possible orders of these spacers:
7-6-5-4-3-2-1, 7-6-4-5-3-2-1, or 7-6-4-3-5-2-1

• The set of spacers possibly present in the ancestor is
the union of all spacers before the first shared spacer:
{8, 9, 10, 11}.

– Order constraints for these spacers: 11 before
10 before 9 before 7

• Unobserved spacers (spacers present in the ancestor
and lost in both lineages) may have occurred at all
possible positions.

Since a lot of possible arrays are generated by this
approach, heuristics are used to reduce their number:

• Shared fragments cannot be interrupted by an
unobserved spacer.

– In the example, there is no unobserved spacer
between 6 and 7.

• Unique fragments in the beginning are not mixed.

– In the example, 8 and 11-10-9 are in the
beginning and then the following ancestral
fragments are not allowed: 11-8-10 and
10-8-9.

• Deleted pairs are also not mixed.

– In the example 4-3 and 5 are deleted and the
ancestral fragment 4-5-3 is ignored.

• The number of positions with unobserved spacers is
maximal four. That means there can still be a lot of
unobserved spacers but they occur only in maximal
four stretches.

This reduction is only for computational reasons, and
may result in the true/simulated ancestor not being
included in the set of possible ancestors. For small sim-
ulations it was shown that the results are very similar
(data not shown) and that the ancestors generated contain
enough information for the likelihood function.

Loss time
Two arrays do not contain information about the diver-
gence time if they have no overlap. To include them in the
analysis, we are interested in the time passed until an array
lost all spacers present in the ancestor.
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The lineage loss time distribution for a given ρ is the
following distribution of times: Given an array in station-
arity, when does the last spacer from the ancestral array
gets lost? The expected lineage loss time is the expectation
of this distribution. Analogously, we define the pairwise
loss time distribution as the distribution of times when two
independently evolving lineages lost their last common
spacer. In detail, we simulate two lineages starting from
a common ancestor and track changes in both lineages
simultaneously. t is the time when the deletion in one lin-
eage results in the loss of all spacers that are present at that
time in the other lineage. The pairwise loss time simulated
is then 2t since there were two lineages. The distribution
is always approximated using 10,000 simulated pairs.
The expectations of these distributions is denoted by

αl(ρI ) (expected lineage loss time under the independent
loss model given ρI ), αp(ρI) (expected pairwise loss time
for the independent loss model given ρI ), and analogously
with subscript F for the fragment loss model. In case
the underlying ρ is clear, the argument is omitted. The
expected lineage and pairwise loss times are lower for the
fragment loss model (Figure 5). In the estimation, we set
τ̂ = αp(ρ̂) for a pair without overlap. Note that this is an
underestimate of the time between two arrays since the
loss time is an estimate of the minimum, i.e., the first time
when two arrays lost common spacers.

Simulation
Simulation under each model is implemented in a python
program. Input is a phylogeny with branch lengths, ρ and
the type of the model. An ancestor length is drawn at the
root of the phylogeny from the stationary distribution of
the lengthmodel. Spacers are labelled arbitrarily. Then the
tree is traversed in preorder and the descendent of each
branch given its ancestor and branch length t is simulated
as follows.

Figure 5 Expected loss times for both models. αl - expected
lineage loss time, αp - expected pairwise loss time. αl(ρI) = αp(ρI),
thus only one is displayed. Corresponding ρs are in one column, i.e.,
they result in the same expected length. Each point represents 10,000
simulations.

Start with the ancestor s, n = |s|, current time tc = 0.

1. Determine the time until the next event of each type:

(a) Draw a waiting time until the next insertion
event from an exponential distribution with
rate λ.

(b) Draw the waiting times until the next
deletion for each spacer or fragment.

(b1) If the independent loss model is simulated,
draw n exponential waiting times, each with
rate μ.

(b2) If the fragment loss model is simulated, draw
n(n+1)

2 exponential waiting times with rate μ,
one for each fragment.

2. Find the minimal time tmin over all times generated
in step 1.

3. tc = tc + tmin.
4. If tc > t, return s as the sequence at the descendent

node.
5. Else the event that corresponds to tmin is realized, the

other events are discarded. If tmin corresponds to an
insertion, one spacer with a new name is inserted. In
case of the unordered model, the spacer is inserted at
a random position, in the other cases it is always
inserted in the beginning of s. If tmin corresponds to a
deletion, modify s by deleting the corresponding
fragment or spacer.

6. Continue at step 1 with the modified s.

Phylogeny computation using CRISPR distances
The sum of the estimated times given two strains, τ , can
be interpreted as the distance between these two strains.
These distances can be used to compute a distance-based
phylogeny using neighbor joining [32] as was presented
by Huson and Steel [33]. For the non-reversible models,
however, there is more information available, since there
is an estimate for the distance of the last common ancestor
to each of the two strains. We use a modified neighbor
joining method to utilize this information and refer to it
as rooted neighbor joining. We describe the algorithmwith
an example.
Input: For k taxa, all

(k
2
)
pairs with rooted time esti-

mates, that is dx,y for the distance to taxon x from the
ancestor of the pair (x, y).
Output: A rooted phylogenetic tree with times t.

Algorithm:

1. Compute the weights for all pairs (x, y):

wx,y =
∑
z �=x,y

(dx,z − dx,y + dy,z − dy,x)

= (2 − k)(dx,y + dy,x) +
∑
z �=x,y

(dx,z + dy,z)
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2. Choose the pair with maximal weight wx,y. Create a
new node r that is the ancestor of (x, y) with
tr,x = dx,y and tr,y = dy,x.

3. Compute the distances between all other nodes z and
r:

dr,z = 1
2
(dx,z−dx,y+dy,z−dy,x), dz,r = 1

2
(dz,x+dz,y)

4. If only one node is left, return it as the root, else
continue with step 1.

By construction, the method results in the correct
rooted tree if the distances were extracted from a rooted
tree. We show this for three taxa.
For three taxa, there is only one clade, we choose (1,2)

to be the correct clade. Then the branch lengths are given
in Figure 6.

Iteration 1:

Distance matrix dx,y =
⎛
⎝

1 2 3
1 0 a a + c
2 b 0 b + c
3 d d 0

⎞
⎠.

Weights: w1,2 = −(d1,2 + d2,1) + d1,3 + d2,3 = −(a+ b) +
a + c + b + c = 2c, w1,3 = −(a + c + d) + a + d = −c,
w2,3 = −(b + c + d) + b + d = −c. Thus for all possible
a, b, c, d, w1,2 = argmaxi,jwi,j and the correct grouping is
chosen by the algorithm.
Create node 4 with t4,1 = d1,2 = a and t4,2 = d2,1 = b.
The tree is now (t1:a,t2:b)4.

Iteration 2:

Distance matrix dx,y =
( 3 4

3 0 d
4 c 0

)
.

There is only one pair, create node 5 with t3,5 =
d3,4 = d and t4,5 = d4,3 = c. The resulting tree is
((t1:a,t2:b)4:c,t3:d)5. Apart from the internal
labels, this tree is identical to the original one (Figure 6).
We abbreviate the method rooted neighbor joining with

times from the fragment loss model by RNJF , analogously
for NJ and subscript O for the ordered model and sub-
script U for the unordered model.

Yersinia pestis data set
We downloaded available Yersinia pestis genomes (final
list in Table 2). Unfinished strains were included if
open reading frames have been annotated. Cas genes are
detected using HMMER [34] and the profiles defined
previously for the Ypest type (ftp://ftp.ncbi.nih.gov/pub/
wolf/_suppl/CRISPRclass/crisprPro.html [5]). Unfinished
strains were excluded if cas genes were detected on differ-
ent contigs. In these cases, not all cas genes were available.

t1t2t3

d

c

b a

Figure 6 Rooted tree of three taxa with branch lengths.

The whole locus was extracted, i.e., the sequence from the
start of cas1 until the end of csy4. Nucleotide sequences
from the resulting 19 strains were aligned using clustalw
[35] into an alignment of 8555 sites that is subsequently
used for phylogeny estimation with iqpnni [36].
Putative CRISPR arrays for the 19 strains are extracted

using CRISPRfinder [37]. True CRISPR elements are
found by comparing the repeat sequence to the known
Yersinia pestis repeat. The three types of CRISPR arrays
are distinguished by their last degenerated repeat [8].
In total, four CRISPR arrays are missing from the
CRISPRfinder results. In these cases, we located the
respective leader in the genome and extracted repeats and
spacers manually. These arrays harbor none or one spacer.
For each data set, spacers were assigned the same identity
if they show more than 90% sequence similarity. This is a
natural cutoff to choose since there was no pair of spacers
with similarity between 65% and 90%. Spacer sequences
can be found in Additional file 2 for Yp1, in Additional
file 3 for Yp2 and in Additional file 4 for Yp3.

Results
Parameter estimation for simulated pairs
In the first simulation setting, we present basic simula-
tions with clocklike two-taxon trees. A tree height of 1,
5 and 10 is investigated, resulting in τ = 2, 10, 20, and
different possible values for ρ: ρ = 10, 50, 100 for the frag-
ment loss model and ρ = 2.4, 4.8, 6.4 for the independent
loss model. These values were chosen because they are
corresponding ρs (Figure 3).

ftp://ftp.ncbi.nih.gov/pub/wolf/_suppl/CRISPRclass/crisprPro.html
ftp://ftp.ncbi.nih.gov/pub/wolf/_suppl/CRISPRclass/crisprPro.html
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Table 2 CRISPR arrays from Yersinia pestis genomes

Strain Accession Yp1 Yp2 Yp3

91001 GenBank:NC_005810.1 21-1-0 3-2-1-0 0

a1122 GenBank:NC_017168.1 7-6-2-5-1-4-3-0 4-3-2-1-0 2-1-0

angola GenBank:NC_010159.1 8-1-4-0

antiqua GenBank:NC_008150.1 10-9-1-4-3-0 5-2-0 2-1-0

ca88-4125 GenBank:ABCD00000000.1 7-6-2-5-1-4-3-0 4-3-2-1-0 2-1-0

co92 GenBank:NC_003143.1 7-6-2-5-1-4-3-0 4-3-2-1-0 2-1-0

d106004 GenBank:NC_017154.1 6-2-5-1-4-3-0 3-2-1-0 2-1-0

d182038 GenBank:NC_017160.1 11-6-2-5-4-3-0 3-2-1-0 2-1-0

e1979001 GenBank:AAYV00000000.1 11-6-2-5-4-3-0 3-2-1-0 2-1-0

f1991016 GenBank:ABAT00000000.1 7-6-2-5-1-4-3-0 4-3-2-1-0 2-1-0

harbin35 GenBank:NC_017265.1 4-31-01 3-2-1-0 2-1-0

india195 GenBank:ACNR00000000.1 7-6-2-5 4-3-2-1-0 2-1-0

kim10 GenBank:NC_004088.1 4-3-0 31-2-1-0 2-1-0

mg05-1020 GenBank:AAYS00000000.1 7-6-2-5-1-4-3-0 4-3-2-1-0 2-1-0

nepal516 GenBank:NC_008149.1 02 3-2-1-0 2-1-0

pestoidesa GenBank:ACNT00000000.1 2-1-03 6-3-2-0 1-01

pestoidesf GenBank:NC_009381.1 12-5-1-4-3-0 9-8-6-1-7-0 4-3-2-1-0

pexu2 GenBank:ACNS00000000.1 7-6-2-5-1-4-3-0 4-3-2-1-0 2-1-0

z176003 GenBank:NC_014029.1 6-2-5-1-4-3-0 3-2-1-0 2-1-0

Spacers are grouped and assigned a unique number for each array if they show > 90% sequence similarity. Different variants are marked by superscript and ignored in
the analysis. The leader-proximal end is displayed on the left. Spacer sequences can be found in Additional file 2 for Yp1, in Additional file 3 for Yp2 and in Additional
file 4 for Yp3.

First, we compare the simulated ρ with its estimation.
ρ is estimated based on the start likelihood using the sta-
tionary distribution or on the full likelihood summing
over all pairs. Note that the start likelihood functions are
equal for both independent loss models. The estimates
based on the start likelihood and on the full likelihood are
very similar for the independent loss models (Figure 7A,
B). For the fragment loss model, ρF tends to be underesti-
mated for the full likelihood but not for the start likelihood
(Figure 7D). The segmentation of ancestors and descen-
dants into independent pairs may cause this bias. This
segmentation ignores the probability of deletion events
spanning multiple segments and can result in an overesti-
mation of μF and thus in an underestimation of the ratio
ρF = λ/μF .
We also compare the estimation using the full likelihood

with the ancestor fixed to the true ancestor and using
the full likelihood with summing over possible ancestors.
The estimated values of ρ are very similar, which leads
to the conclusion that the ancestor enumeration works
appropriately.
Next, we use the same simulated data sets, but inves-

tigate the results when using an incorrect model for the
estimation. We only compare the models with single dele-
tions among each other and the models with polarized

insertions among each other (see also Table 1). The inde-
pendent loss models differ only in their insertions. When
using the incorrect insertion model, ρ̂I is very similar
(Figure 7A, B). These models are also very similar in their
construction. They are the same if after the first shared
spacer there are no spacers unique to one strain. When
using the incorrect deletion model, the corresponding ρ

tends to be estimated (Figure 7C, E). In detail, the ρI that
is estimated under the ordered model from the data gen-
erated under the fragment loss model is on average the
ρI corresponding to ρF used for the simulations (red line
in Figure 7E). The underestimation of ρF is even present
to a larger extent when ρF is estimated from data gener-
ated under the orderedmodel compared to the estimation
under the true model.
Times can only be estimated for pairs with overlap. The

quality of the time’s estimation depends on the simulated
ρ since the loss times depend on ρ. For larger ρ, the
pairwise loss time is larger, thus it is possible to estimate
larger times.When only pairs with overlap are considered,
the times tend to be underestimated when the true time
exceeds the expected pairwise loss time (Figure 8, blue and
green boxes). We use the expected pairwise loss time as
an approximation of the times for the empty pairs. Thus
for these pairs, τ̂ = αp(ρ̂). Using τ̂ from all pairs instead
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Figure 7 Estimation of ρ with 2 arrays. (A) Simulations under the unordered model. (B,C) Simulations under the ordered model. (D,E) Simulations
under the fragment loss model. A standard boxplot is shown. 1000 replicates are simulated under each setting. If present, the number of points
outside the plot are listed above.

from the pairs with overlap only, decreases the average
time estimated, if there are many empty pairs (Figure 8).
This can be explained by two effects. First, the loss time
is a minimum, i.e., the first time when two arrays lost
common spacers. Second, shorter arrays occur more often
among the pairs without overlap. That means, ρ̂ is smaller
for these pairs and thus their loss time is smaller as well
(Table 3).
Using the true model, we find that times are well esti-

mated until a threshold depending on the simulated ρ. For
example, for the independent loss model, for ρ = 4.8,
only τ = 2 is well estimated, but for ρ = 6.4, τ = 2
and τ = 10 are well estimated. This threshold is below
the expected pairwise loss time. Time estimation for the
fragment lossmodel is more noisy and a slight overestima-
tion can occur for intermediate times that may be related
to the underestimation of ρ for these parameter settings
(Figure 8D).

Time estimates for the incorrect independent loss
model are very similar (Figure 8A, B). In general, the
ordered model results in slightly lower time estimates.
Small and intermediate times are overestimated when the
orderedmodel is applied to data generated under the frag-
ment lossmodel (Figure 8E), possibly becausemore events
are necessary to explain this data. Applying the fragment
lossmodel to ordered independent loss data also results in
an overestimation for intermediate times (Figure 8C).

Parameter estimation for simulated phylogenies
Next we apply the estimation to data sets simulated on a
phylogeny. The same values of ρ as in the previous sim-
ulations were used. Phylogenies of 10 taxa are generated
under a Yule process and rescaled to a specific tree height
(tree height of 1, 5, 10, 20 and 30, respectively).
These results generally confirm the results for pairs of

arrays, but resulting distributions of ρ̂ and τ̂ have a lower
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Figure 8 Estimation of times with 2 arrays. (A) Simulations under the unordered model. (B, C) Simulations under the ordered model. (D,
E) Simulations under the fragment loss model. τ is the sum of the times from the ancestor to both descendants. Only pairs with overlap are
included for “overlap”, the number of pairs is given by “Count”. A standard boxplot is shown. 1000 replicates are simulated under each setting. If
present, the number of points outside the plot are listed above.

variance. The variance in the estimates is higher for the
fragment loss model compared to the independent loss
models. For the independent loss model, the mean of the
ρ̂-values is usually close to ρ (Figure 9). Under the frag-
ment lossmodel, ρ for the intermediate times are underes-
timated (Figure 9D). Times are again well estimated until
a threshold depending on the simulated ρ (Figure 10).
For the fragment loss model, times are overestimated for
intermediate tree heights (Figure 10D).

Yersinia pestis analysis
Yersinia pestis genomes generally harbor three CRISPR
arrays types, called Yp1, Yp2, and Yp3. All three array
types have the same repeat sequence and only one set
of cas genes of the Ypest type is present in the genome.
We demonstrate the methods using three Yersinia pestis
data sets (Table 4). One data set was assembled from

19 sequenced genomes (see Materials and Methods and
Table 2). Pourcel et al. [8] investigate 62 strains but Yp1
is only present in 60 of them. They sequence Yp2 in 15
of them but give no detailed information about Yp3, thus
it was not included. Cui et al. [27] investigate 131 strains,
including published genomes and Yersinia pestis isolates
from Asia. The three arrays are present in all of them but
sequence information for Yp2 and Yp3 is missing in 6 and
5 strains, respectively.
Data set 1 consists of on average shorter arrays than the

published data sets. This results in lower estimates of ρ for
this data set (Table 5). For data sets 2 and 3, ρ estimates
between the data sets for the same CRISPR array type
are largely congruent. Comparing average times between
arrays with different ρ is problematic, since larger ρ can
resolve larger times. Thus we compare average diversity
between data sets. Diversity for a pair is computed as the
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Table 3 Median ρ estimates

ρ τ no ρ̂ ρ̂o ρ̂e

Unordered model

2.4 2 781 2.000 2.500 0.500

2.4 10 269 1.861 3.000 1.491

2.4 20 29 1.833 3.552 1.833

4.8 2 981 4.631 4.872 0.788

4.8 10 840 4.352 4.669 2.191

4.8 20 455 3.846 4.965 3.351

6.4 2 998 6.000 6.000 1.000

6.4 10 949 5.716 5.862 2.326

6.4 20 715 5.285 5.928 3.757

Orderedmodel

2.4 2 809 2.424 2.500 0.500

2.4 10 267 1.861 2.950 1.500

2.4 20 26 1.833 3.282 1.833

4.8 2 977 4.500 4.552 0.500

4.8 10 794 4.346 4.761 2.564

4.8 20 460 3.963 5.128 3.108

6.4 2 997 6.431 6.431 0.500

6.4 10 942 6.144 6.361 2.598

6.4 20 733 5.625 6.286 3.846

Fragment loss model

10 2 761 6.437 9.201 2.039

10 10 173 9.011 9.832 9.011

10 20 24 9.187 8.705 9.187

50 2 921 35.040 39.779 9.011

50 10 602 31.272 33.123 26.442

50 20 261 36.708 34.167 36.708

100 2 965 71.452 72.466 25.464

100 10 704 57.810 62.657 44.085

100 20 440 66.145 66.145 66.560

Estimation with two arrays under the correct model, same data as Figures 7 and
88. no - number of pairs with overlap, ρ̂o - median of ρ estimates of pairs with
overlap only, ρ̂e - median of ρ estimates of pairs without overlap only.

time between the arrays divided by the pairwise loss time,
where maximum diversity is 1. Yp3 has the lowest diver-
sity for each data set it is present. However, the results for
the other array types differ. Pourcel et al. [8] argued that
Yp1 is the most dynamic CRISPR locus. Based on the data
of Pourcel et al. (data set 2), diversity is similar in Yp1 and
Yp2 under the independent loss model, and diversity is
lower in Yp1 than in Yp2 under the fragment loss model.
This discrepancy is resolved when comparing the average
times. The average time is larger in Yp1 than in Yp2 for
each model. Thus there are more events present in Yp1
compared to Yp2.When considering that the longer arrays

in Yp1 could resolve larger times, the diversity results in a
similar value. Data set 3 [27] shows higher diversity in Yp1
compared to Yp2 under all three models. Diversity in Yp1
is also higher in data set 3 compared to data set 2. Data set
3 thus captures a larger fraction of the diversity in CRISPR
spacer content present in Yersinia pestis.
Cas sequence data is only present for data set 1.

The respective cas phylogeny contains few substitutions
(Figure 11). The spacer distances are also displayed in a
tree structure using the unrooted and rooted neighbor
joining method (Figure 12). These trees contain substan-
tially more changes than the cas gene phylogeny and
there are also few incongruencies. The group (nepal516,
harbin35) present in the cas phylogeny is not present in
any CRISPR tree, but is compatible with the trees from
Yp2 and Yp3. The group (pestoidesa, pestoidesf, angola) is
contradicted in all trees. The rootedmethod tends to con-
nect strains with few spacers directly to the root, for Yp1
this is nepal516 (having only one spacer) and for Yp2 and
Yp3 this is angola (having an empty array). Note that the
angola strain was indeed described to be a deep-rooting
Yersinia pestis strain [38]. For the slowly evolving locus
Yp3, the clusters displayed by NJU and RNJF are equal,
only the branch lengths differ and the clusters display the
relationships well. In detail, there is a cluster for all strains
having spacer 0, for all strains having spacer 1, and for all
strains having spacer 2. The terminal branch leading to
angola is much longer for NJU , since multiple deletions
are needed that can be explained by only one event under
the fragment loss model. On the other hand, the branches
leading to pestoidesf have about the same length since
there are only two observed insertions. For the othermore
diverse loci, trees display which strains are more divergent
and which ones are more similar. For example, RNJF for
Yp2 shows that angola, pestoidesf, antiqua and pestoidesa
are more divergent, whereas the other strains are more
similar to each other. Indeed, to convert between two of
the other strains at most one event is needed, wheres to
convert one of the four strains mentioned into any other
one at least two events are necessary.

Discussion
We present a new method for analyzing CRISPR spacer
data from microbial populations. The evolution of
CRISPR is mainly driven by the insertion of new spacers
during infection with foreign DNA and by the presum-
ably random deletion of successive spacers. We try to
meet these biological characteristics in the models pre-
sented here. Estimating insertion and deletion rates and
time in number of expected events in one lineage allows
for comparisons of empirical data sets that could lead
to relevant conclusions. First, bacterial groups in differ-
ent environments can be compared in terms of CRISPR
dynamics to assess the relative importance of CRISPR in
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Figure 9 Estimation of ρ with 10 arrays. (A) Simulations under the unordered model. (B, C) Simulations under the ordered model. (D,
E) Simulations under the fragment loss model. Data was simulated on random Yule trees rescaled to a specific treeheight. A standard boxplot is
shown. 1000 replicates are simulated under each setting. If present, the number of points outside the plot are listed above.

these environments. Different CRISPR array types might
show different dynamics and thus have different utility for
strain typing. An observed switch in spacer dynamics on
a phylogeny might suggest a change in CRISPR cost or
environment.
The three models presented here capture different

mechanisms of CRISPR evolution, namely polarized addi-
tion of spacers and deletion of multiple successive spacers
(Table 1). The CRISPR spacer arrays used for the analysis
are assumed to be homologous. CRISPR homology can be
determined by synteny in genomic positions and by repeat
and leader similarities.
Models are necessarily a simplification of the past

biological process. In our model, we ignore population
dynamics. Our insertion and deletion rates are, as the
substitution rates in phylogenetics, a compound param-
eter including the process of random changes and selec-
tion. The model is based on a time-homogenous Markov

process and the dynamics are assumed to be in station-
arity. Since an analysis is based on one species and one
CRISPR type, it is reasonable to assume that the mech-
anistic insertion and deletion rates are homogeneous
across the set of strains analyzed. We can not exclude,
however, that subsets of strains experienced a different
environment and thus different selection pressure on their
spacer content. Simulations showed that the number of
spacers in an array is determined mainly by internal
parameters, like spacer insertion rate and cost of having
spacers, not by external parameters, like the number of
viruses in an environment [15].
We are not aware of previous publications estimat-

ing parameters under the ordered or the fragment loss
model. The length model of the independent loss model
corresponds to an M/M/∞ queuing model [28]. The
unordered model corresponds to the gene content model
for the maximum-likelihood distance estimation in [33].
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Figure 10 Estimation of times with 10 arrays. (A) Simulations under the unordered model. (B, C) Simulations under the ordered model. (D,
E) Simulations under the fragment loss model. A standard boxplot is shown. 1000 replicates are simulated under each setting. If present, the
number of points outside the plot are listed above.

In the context of birth and death processes it is known as
the simple death-and-immigration process (e.g., [40]).
The times estimated under these models also allow a

comparison to substitution rates if sequence data is avail-
able. This analysis is however complicated by several facts.
First, microbial genomes often harbor multiple CRISPR
arrays. As a consequence, it is not clear how to combine
these estimates to make a comparison possible. Second,
spacer content might be different for very closely related
strains. Then only a few polymorphisms are available and
the substitution rate cannot be estimated reliably. Finally,
frequent horizontal gene transfer of the CRISPR/Cas sys-
tem has been suggested (e.g., [41]), and thus CRISPR rates
can only be compared to substitution rates of cas genes.
The parameter estimation as presented here does not

use an explicit phylogeny. This is advantageous since
no search through tree space is necessary or no pre-
computed phylogeny needs to be given. The latter may

Table 4 Yersinia pestis data sets

Data set Array Strains Avg. length Avg. overlap

Yp1 19 5.737 0.658

1 (Table 2) Yp2 19 4.211 0.741

Yp3 19 2.789 0.865

2 [8]
Yp1 60 6.8 0.905

Yp2 15 4.733 0.847

Yp1 131 6.542 0.588

3 [27] Yp2 125 4.584 0.814

Yp3 126 2.99 0.931

The average overlap is computed as the mean of the overlap over all pairs. The
overlap of a pair is the number of equal spacers divided by the mean length of
both arrays.
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Table 5 Yersinia pestis results

Unordered model Ordered model Fragment loss model

Data Avg. Avg. Avg. Avg. Avg. Avg.

set Array ρ̂I time diversity ρ̂I time diversity ρ̂F time diversity

Yp1 5.555 5.802 0.2271 5.527 5.947 0.2362 46.24 4.96 0.3331

1 Yp2 4.027 3.479 0.2188 4.005 3.538 0.2241 22.87 3.645 0.3108

Yp3 2.667 1.506 0.1755 2.667 1.486 0.1772 11.36 1.313 0.2061

2
Yp1 6.625 4.726 0.1445 6.624 4.761 0.1446 90.21 3.859 0.188

Yp2 4.676 2.984 0.1494 4.655 3.082 0.156 28.61 3.701 0.2748

Yp1 6.401 9.138 0.2943 6.36 9.259 0.2983 80.76 9.741 0.4408

3 Yp2 4.613 3.329 0.1707 4.607 3.379 0.1749 39.31 3.359 0.2492

Yp3 2.969 0.7221 0.07339 2.959 0.7184 0.07114 12.6 0.8776 0.1025

not be possible since no external information might
resolve the CRISPR relationships. On the other hand,
only a distance-based approach is available to display
the CRISPR relationships. We can use the rooted dis-
tance from non-reversible models to compute rooted
non-clocklike distance-based trees.
We find that estimation of the rate parameter performs

well on average, but the estimates under the indepen-
dent loss models show a lower variance. The fragment
loss model tends to an underestimation and may be
affected by the factorization of the likelihood function.
The time estimates are most accurate for shorter times.
For longer times, the absence of overlap complicates an
accurate time estimation. In the analyses presented here,
the different models result in similar estimates. If the
incorrect loss model is applied, the corresponding ρ tends
to be estimated fairly accurately. There is also no clear
bias that affects the time estimation under an incorrect
model. Note that there is a wide range of possible models
accounting for fragment deletions. We chose one with the

same instantaneous rate for each possible fragment, i.e.,
ignoring fragment length. This simplification is mainly for
computational reasons. Future work on other fragment
loss models, including lengths of fragments, might lead to
a better fit for CRISPR spacer data.
We compare the estimations between data sets and

between different CRISPR arrays present in a genome.
Three Yersinia pestis data sets were chosen since they
harbor three CRISPR array types and thus this data sets
allows for comparison between data sets and between
CRISPR array types evolving with different dynamics.
Using this data set, we find ρ estimates to be similar using
two published data sets but lower in a data set assembled
from published genomes. Time and diversity estimates
differ between data sets thus the presented methods allow
comparisons of the diversity of CRISPR loci sampled from
different populations.
For the Yersinia pestis data from published genomes, we

observe only few differences in the cas gene sequences
but a high diversity at the spacer level. Thus substitution
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rates cannot be compared with reliability, but nucleotide
and CRISPR spacer data provide phylogenetic informa-
tion at very different time scales. It is possible to compute
cas gene phylogenies on the species level (e.g., [41]). In
contrast, spacer information could be utilized for closely
related strains that have only few differences in the other
nucleotide sequences, which has already been done in
using CRISPR in strain typing (e.g., [8,10,11]).Themethod
presented here can be used to define groups based on the
clustering or to find relationships between groups.
A steadily growing literature suggests many other pos-

sible mechanisms of CRISPR evolution apart from polar-
ized addition and fragment deletion. Spacer insertion can
happen together with an internal deletion [42], or at an
internal repeat [43]. Spacers or whole fragments may be
duplicated [44]. And present spacers can guide the acqui-
sition of new spacers from the same DNA molecule [45].
Note that these results affect only the insertion step of
the CRISPR evolution process. But the fragment deletion
model as it is presented here is based on the polarized
insertion assumption. Combining an unordered insertion
with a fragment deletion process is currently infeasible.
Given these studies and the fact that the models pre-
sented here do not give substantially different results, the
unordered model may be a robust choice for estimating
rate and time parameters from CRISPR array data. Note
that several simplifications are possible for the likelihood
computation under this model. First, for the start likeli-
hood, the estimate of the Poisson parameter is well known
to be the mean of the data values. Second, it is reversible,
thus only the time between two arrays can be estimated
and the ancestor generation can be omitted. Third, the
loss time can be calculated analytically and does not need
to be acquired using simulations. Tomake themodel com-
parisons fair, the same computational approach is used for
all models in this paper. But it is possible to implement a
more efficient approach for the unordered model. Under
this model, an algorithm for the likelihood computation
on a phylogeny is also potentially feasible.

Conclusions
We present different models specific for CRISPR spacer
content evolution. The three models differ in two aspects.
First, fragment loss models differ from the independent
loss models since they allow the loss of a succession of
spacers in one event. Second, the unordered indepen-
dent loss model differs from the others since spacers can
be incorporated throughout the array, not only on one
end. A probabilistic model for each of these three mod-
els is presented here. We developed an approach derived
from a well behaved stationary distribution, to establish
the bounds on the state space that is a priori infinite.
We find that the simpler model, without fragment dele-
tions, is more robust. Distance-based phylogenies can be

calculated from the time estimates, but the rapid change
of spacer content restricts this method to closely related
strains with similar spacer content.
In summary, the models facilitate quantitative state-

ments about the spacer dynamics of microbial communi-
ties. Thus comparisons are possible, for example, between
strain collections from one species at different locations or
between different homologous CRISPR arrays in the same
set of species.
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