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Abstract

Background: Double-stranded (ds) RNA fungal viruses are typically isometric single-shelled particles that are
classified into three families, Totiviridae, Partitiviridae and Chrysoviridae, the members of which possess monopartite,
bipartite and quadripartite genomes, respectively. Recent findings revealed that mycovirus-related dsRNA viruses are
more diverse than previously recognized. Although an increasing number of viral complete genomic sequences
have become available, the evolution of these diverse dsRNA viruses remains to be clarified. This is particularly so
since there is little evidence for horizontal gene transfer (HGT) among dsRNA viruses.

Results: In this study, we report the molecular properties of two novel dsRNA mycoviruses that were isolated from
a field strain of Sclerotinia sclerotiorum, Sunf-M: one is a large monopartite virus representing a distinct evolutionary
lineage of dsRNA viruses; the other is a new member of the family Partitiviridae. Comprehensive phylogenetic
analysis and genome comparison revealed that there are at least ten monopartite, three bipartite, one tripartite and
three quadripartite lineages in the known dsRNA mycoviruses and that the multipartite lineages have possibly
evolved from different monopartite dsRNA viruses. Moreover, we found that homologs of the S7 Domain,
characteristic of members of the genus phytoreovirus in family Reoviridae are widely distributed in diverse dsRNA
viral lineages, including chrysoviruses, endornaviruses and some unclassified dsRNA mycoviruses. We further
provided evidence that multiple HGT events may have occurred among these dsRNA viruses from different families.

Conclusions: Our study provides an insight into the phylogeny and evolution of mycovirus-related dsRNA viruses
and reveals that the occurrence of HGT between different virus species and the development of multipartite
genomes during evolution are important macroevolutionary mechanisms in dsRNA viruses.
Background
Mycoviruses (fungal viruses) are widespread in all major
fungal groups and most of these cause little or no obvi-
ous symptoms in their fungal hosts. Current studies on
mycoviruses are mainly focused on those of economic-
ally important fungi that are typically phytopathogenic
fungi. These studies aim to develop mycoviruses as
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biocontrol agents to combat fungal diseases and exploit
them as tools to explore the physiology of their fungal
hosts [1,2]. The recent discoveries of two novel myco-
viruses from the white mold fungus Sclerotinia sclero-
tiorum, one RNA virus related to rubi-like viruses of
positive-strand RNA viruses [3] and another circular
single-stranded (ss) DNA virus related to plant gemini-
viruses [4], have potentially significant implications for
understanding the origin and evolution of related viral
lineages. Given that mycoviruses represent essential evo-
lutionary lineage of viruses from one of three kingdoms
(plants, fungi and animals), the discovery of novel
mycoviruses may not only expand our knowledge of
This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.

mailto:daohongjiang@mail.hzau.edu.cn
http://creativecommons.org/licenses/by/2.0


Liu et al. BMC Evolutionary Biology 2012, 12:91 Page 2 of 15
http://www.biomedcentral.com/1471-2148/12/91
viral diversity and global ecology, but also helps shed
light on the evolutionary relationships of viruses.
The majority of known mycoviruses has rigid particles

and double-stranded (ds) RNA genomes and are now
classified, based on the number of genome segments, into
four families: Chrysoviridae, Partitiviridae, Reoviridae,
and Totiviridae [5]. Members of family Totiviridae have
monopartite dsRNA genomes coding for a capsid protein
(CP) and an RNA-dependent RNA polymerase (RdRp).
The genomes of members in the families, Partitiviridae,
Chrysoviridae and Reoviridae comprise two, four and
eleven/twelve segments, respectively. In addition, viruses
in the family Endornaviridae, which lack true virions, are
currently classified as dsRNA viruses by ICTV, although
there is some evidence to suggest that they have evolved
from alpha-like viruses of positive strand RNA viruses.
Beside fungi, viruses in these families also infect other
organisms.
More recently, several monopartite dsRNA viruses

with evolutionary links between totiviruses and partiti-
viruses were isolated from plants [6-8]. Furthermore,
a novel bipartite dsRNA mycovirus phylogenetically
distantly related to totiviruses and chrysoviruses was
reported from the white root rot fungus Rosellinia neca-
trix [9]. These viruses represent new evolutionary
lineages of dsRNA viruses, implying that dsRNA viruses
are more diverse than previously recognized. Although
an increasing number of complete genomic sequences
of viruses have been reported, the evolution of these
diverse dsRNA viruses remains to be clarified.
Horizontal gene transfer (HGT) between different

viruses is important in virus evolution. The occurrence
of HGT is dependent on recombination or reassortment
and is capable of generating impressive genetic diversity.
While HGT is commonly found in retroviruses, DNA
viruses and positive-sense RNA viruses [10-16], it has
only rarely been shown to occur in negative-sense RNA
viruses and dsRNA viruses [17,18]. In dsRNA viruses,
there are only some sporadic reports of intra-species
HGT events that occur in rotaviruses [19-21] and birna-
viruses [18]. To date no evidence has been reported of
inter-species HGT in dsRNA viruses.
Here, we carried out molecular cloning and complete

genomic sequencing of two novel dsRNA viruses from
S. sclerotiorum strain Sunf-M, one is monopartite and
the other is bipartite. We then performed genome
sequence comparisons and phylogenetic analyses involv-
ing these two viruses and other related known dsRNA
viruses in order to elucidate the phylogenetic relation-
ships and evolution of relevant dsRNA viruses. Moreover,
we provided evidence based on sequence comparison
and phylogenetic analysis that cross-family HGT events
may have occurred between dsRNA viruses from dif-
ferent families.
Results and discussion
Discovery and complete genomic sequencing of dsRNA in
S. Sclerotiorum sunf-M
S. sclerotium strain Sunf-M, which was originally iso-
lated from a sclerotium on a diseased sunflower plant
(Helianthus annuus), was a normal wild-type strain in
colony morphology and virulence. Agarose gel electro-
phoresis of dsRNA isolated from mycelial extracts of strain
Sunf-M revealed the presence of three dsRNA bands,
termed L-, M- and S-dsRNA respectively (Figure 1A). The
largest L-dsRNA was generally more abundant and
migrated slightly slower than the M-dsRNA.
The L-dsRNA was purified from agarose gel with a gel

extraction kit, and then subjected to cDNA synthesis,
PCR amplification, cloning and sequencing as described
before [3]. Computer-assisted sequence assembly showed
that the full-length of L-dsRNA cDNA is 9124 bp in
length that lacked a poly (A) tail at its 3′-end. Northern
blot hybridization confirmed that the sequence was
derived from the L-dsRNA (Figure 1B).
Molecular cloning and sequencing of the smallest

S-dsRNA was also carried out and the complete nucleo-
tide sequence was determined. Sequencing and Northern
hybridization analysis revealed that the S-dsRNA band
was actually a doublet consisting of two co-migrating
dsRNA segments and thereby the resulting S-dsRNA
band was designated as S-1 and S-2 dsRNA, which are
1856 bp and 1783 bp in length, excluding the poly (A)
tail, respectively (Figure 1B).

Characterization of the L-dsRNA
The genomic organization of L-dsRNA revealed that it
contains two large open reading frames (ORFs): ORF1 (nt
1089–5006) and ORF2 (nt 5054–9071) in different frames
on the genomic plus strand. The L-dsRNA has a long
5′-UTR of 1088 bp, but relatively short 3-UTR of 48 bp
(Figure 1C). ORF1 potentially encodes a 1305 amino acid
(aa) protein with a predicted molecular mass of 144 kDa.
A sequence search with BLASTp showed that it shares sig-
nificant sequence similarity (E value of≤3e-20) with only
the hypothetical proteins of three unclassified dsRNA
viruses: Grapevine associated totivirus-2 (GrAV-2) [22],
Fusarium graminearum dsRNA mycovirus-3 (FgV-3) [23]
and Phlebiopsis gigantea mycovirus dsRNA 2 (PgRV-2)
[24] in the databases. Although a search of conserved do-
main database (CDD) revealed a significant match (E value
of 8.09e-03) with a partial consensus sequence of the phos-
phoheptose isomerase (SIS_GmhA; cd05006) (Figure 1C),
the function of ORF1 protein is unclear.
ORF2 potentially encodes a 1338-aa protein with a

predicted molecular mass of 146.2 kDa. BLASTp
searches showed that this protein was most closely
related (E value of ≤ 9e-92) to the putative RdRps of the
same three viruses mentioned above as well as another
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Figure 1 Molecular characteristics of L- and S-dsRNA in S. sclerotiorum strain Sunf-M. (A) Agarose gel electrophoresis of dsRNA isolated
from mycelial extracts of Sunf-M. The nucleic acid preparation was fractionated on 1.0% agarose gel and stained with ethidium bromide. Lane M,
DNA size markers generated by digestion of λDNA with HindIII. (B) Northern hybridization analysis of L- and S-dsRNA. dsRNAs were separated on
a 1.0% agarose gel, transferred on to Hybond-N+membrane and hybridized with 32P-labelled probes prepared by random-primer labelling of
cloned cDNA to L, S-1 and S-2 dsRNA, respectively. (C) Schematic representation of the genomic organization of L-dsRNA shows the presence of
two ORFs. The dotted line box indicates a possible extension of ORF2 by frameshifting. The conserved domains of deduced proteins are shown:
SIS, Sugar ISomerase domain; S7, Phytoreovirus S7 protein; RdRP_4, Viral RNA-dependent RNA-polymerase. (D) The pseudoknot structure
immediately downstream of the putative frameshift site. The RNA secondary structure was predicted by KnotSeeker program [45] and drawn by
VARNAv3-7 program [46]. (E) Schematic representation of predicted genome organization of S dsRNA.
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unclassified dsRNA virus Diplodia scrobiculata RNA
virus 1 (DsRV-1; accession no. NC_013699). In addition,
this protein also shares significant sequence similarity
with RdRps of members of the families Totiviridae and
Chrysoviridae. CDD searches and multiple protein align-
ment confirmed that ORF2-encoded protein contained a
conserved viral RdRp domain (RdRp_4; pfam02123) with
eight conserved motifs characteristic of the RdRps in
dsRNA viruses (Figure 2).
Intriguingly, a search of CDD revealed that a region of

L-dsRNA ORF2 downstream of the RdRp domain shared
significant sequence similarity (E value of 5.96e-03) with
a consensus sequence of the Phytoreo_S7 domain
(pfam07236, aa 266–349) (Figure 1C). The Phytoreo_S7
domain is characteristic of a family consisting of several
phytoreovirus S7 proteins known to be viral core pro-
teins with nucleic acid binding activities. The phytoreo-
virus S7 domain has also been found in FgV-3 [23],
chrysovirus Penicillium chrysogenum virus (PcV) [25] as
well as other viruses (see below).
The ORF2 is likely expressed via a −1 frameshift

mechanism as a fusion protein with ORF1-encoded pro-
tein. A heptanucleotide sequence (GAAAAAC4997-5003),
located in a stretch in-frame with ORF1 stop codon re-
gion (nt 4987–5054) and upstream of ORF2 start codon,
was identified as a putative shifty heptamer motif that
could facilitate ribosomal frameshifting (Figure 1C). In
addition, a pseudoknot structure that facilitates pausing
of the translating ribosome and increasing the frequency
of frameshifting [26,27] was also found immediately
downstream of the shifty heptamer (nt 5027–5114)
(Figure 1D). Similar genomic organization and expres-
sion strategy are characteristic of some members of the
family Totiviridae. Therefore, the results presented in
this section suggest that L-dsRNA probably represented
a novel dsRNA mycovirus infecting S. sclerotiorum strain



Figure 2 Comparison of the conserved motifs of RdRps of selected dsRNA mycoviruses including the putative RdRps encoded by
SsNsV-L and SsPV-S. Numbers 1–8 refer to the eight conserved motifs characteristic of RdRps of RNA viruses. The amino acid positions
corresponding to conserved motifs 1 and 2 for the RdRps of viruses in the family Partitiviridae are not well-defined and, therefore, they are not
presented. Asterisks, colons and dots indicate identical amino acid residues (gray shaded), conserved amino acid residues and semi-conserved
amino acid residues, respectively. Numbers in square brackets correspond to the number of amino acid residues separating the motifs. See
Additional file 2: Table S1 and Additional file 1: Figure S3 for abbreviations of virus names and viral protein accession numbers.
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Sunf-M. This virus was hence named as Sclerotinia scler-
otiorum nonsegmented virus L (SsNsV-L).

Characterization of the S-dsRNA
Both S-1 (1856 bp) and S-2 dsRNA (1783 bp) contain a
single ORF on their plus-stranded RNA and share con-
served sequences in their 5′-UTRs (Figure 1E and Add-
itional file 1: Figure S1). The S-1 and S-2 dsRNAs
potentially encode proteins of 579 and 507 aa, respect-
ively. BLASTp searches showed that the S-1 protein had
highest sequence similarity (identity of 47%) to the puta-
tive RdRp of Flammulina velutipes isometric virus
(BAH08700.1) and the S-2 protein shared highest
sequence similarity (identity of 25%) with the putative
CP of Rosellinia necatrix partitivirus 2 (BAK53192.1).
Both of these two viruses are members of family Partiti-
viridae. Furthermore, CDD database searches and mul-
tiple protein alignment revealed that the S-1 protein
contained the consensus motifs of partitivirus RdRps
(RNA_dep_RNAP, cd01699) (Figure 2). These results
suggest that S-dsRNA is a new member of family Partiti-
viridae infecting S. sclerotiorum Sunf-M and was named
as Sclerotinia sclerotiorum partitivirus S (SsPV-S).

The diverse monopartite lineages of mycovirus-related
dsRNA viruses
To elucidate the evolution of mycovirus-related dsRNA
viruses including SsNsV-L and SsPV-S, we compared the
genome structures and performed phylogenetic analyses
for representative members of the families Chrysoviri-
dae, Partitiviridae and Totiviridae as well as other
unclassified dsRNA viruses (Figures 3 and 4, Additional
file 2: Table S1, and Additional file 1: Figure S2). The
analyses revealed that there are diverse evolutionary
lineages in the known mycovirus-related dsRNA viruses
including at least ten monopartite, three bipartite, one
tripartite and three quadripartite lineages.
The monopartite dsRNA family Totiviridae is not

a monophyletic group since it comprises five distant
evolutionary lineages: GLV-like, IMNV-like, victorivirus-
like, ScV L-like, and UmV-H1 (Figure 3 and Additional
file 1: Figure S2). In addition, there were variations in
genome structures for several members compared with
typical members (e.g. ScV-L-A) of the family Totiviridae
(Figure 4). For example, the genome of Piscine myocar-
ditis virus AL V-708 (PMV-AL V-708) contains an extra
ORF at its 3′-terminal other than the CP and RdRp
ORFs [28] (Figure 4); this is not known to occur in other
totiviruses. In addition, contrary to typical totiviruses,
the RdRp ORF of Glomus sp. RF1 medium virus
(GMRV-RF1) is located at the 5′ terminal half of the
genome upstream of CP ORF (Figure 4).
In addition to the five totiviral lineages, the unclassi-

fied monopartite dsRNA viruses consist of five other
evolutionary lineages: Amalgamaviridae, CiTV-1-like,
PgRV-1-like, SsNsV-L-like, and NrV-L1, which are gen-
etically distantly related to each other. The Southern
tomato virus (STV) and three other related viruses
isolated from plants [6-8,29] clustered together and were
distantly related to totiviruses. Their genomes are
shorter than those of totiviruses and no typical virions
are associated with them. A new family, Amalgamaviri-
dae, has been proposed to accommodate these four
viruses [6]. Our phylogenetic analysis revealed that a
yeast virus Zygosaccharomyces bailii virus Z (ZbV-Z)
was also likely to be the member of this proposed family.
The SsNsV-L-like lineage contained SsNsV-L and
four other mycoviruses (Figure 3 and Additional file
1: Figure S2). They have similar genome structures with
typical members of the family Totiviridae but their



LTSV
PEMV-1

RsCV-2
RsCV-3

FsV-1
DdV-1

PsV-F
SsPV-S

RsCV-1
HmRV

WCCV
HaV P-type

AhV
PMV-China

ZbV-Z

BLV
VCV-M
STV
RV-A

PMV-AL V-708 
GMRV-RF1

GLV
IMNV
AsV-SaX06-AK20
ORV
DmV-SW-2009a 

AaRV
AMV-341

TVV
EbRV-1

LRV 1-1
HmRV-No.17 
MoV-1

HvV-190S
CmRV
GaRV-L1

ScV L-BC
ScV L-A
TaV-1
RV-F
BRV-F

ACDAV-RdRp1
ACDAV-RdRp2

DsRV-1
PgRV-2
SsNsV-L
GrAV-2

FgV-3
SpFV-1

CiTV-1
CYAV

UmV-H1
MoCV-1
TcV-2

AMV1816
FgV-China 9 

AbV-1
CCRS-CV
ACD-CV
FoCV-1
HvV-145S
PcV

CnCV-1
AMAV

PgRV-1
LeMV-HKB

HmRV-L2 

RnMBV1

0.5

Partitiviridae
2, 1.4-3.0 kb, poly(A)
Isometric, 30–40 nm

Amalgamaviridae*
1, 3.1-3.5 kb
No particles

1, 4.6-7.0 kb
Isometric, 30-40 nm

Totiviridae

4, 1.5-3.6 kb, poly(A)
Isometric, 33 nm

Victorivirus-like

1, 4.6-7.0 kb
Isometric, 30-40 nm

Totiviridae

4, 3.2-5.2 kb
Isometric, ~45 nm

1, >9 kb
No particles ?

1, ~8 kb
No particles ?

clade I

clade II

Chrysoviridae
>4 ? (I) or 4 (II), 2.4-3.6 kb
Isometric, 35-40 nm

Megabirnaviridae* 2, 7.1-8.9 kb 
Isometric, ~50 nm

1, >11 kb
No particles ?

Fungi

Plants

Arthropods

Protozoans

Fish

0.84
0.99

0.91
1.00

0.97
1.00

0.99
1.00

0.90
0.99 0.99

1.00

0.00
0.66

0.87
0.99

1.00
1.00

0.02
0.73

0.95
1.00

0.83
0.97

1.00
1.00

0.95
1.00

0.99
1.00

0.94
1.00

0.92
1.00

1.00
1.00

1.00
1.00

0.71
0.71

0.94
1.00

1.00
1.00

1.00
1.00

0.58
1.00

0.95
1.00

1.00
1.00

0.89
0.73

AaRV-like

Quadriviridae*

SsNsV-L-like

CiTV-1-like

PgRV-1-like

ScV L-like

IMNV-like

GLV-like

UmV-H1-like

RnQV-1

C
hr
ys

ov
iru

s

Figure 3 (See legend on next page.)

Liu et al. BMC Evolutionary Biology 2012, 12:91 Page 5 of 15
http://www.biomedcentral.com/1471-2148/12/91



(See figure on previous page.)
Figure 3 Phylogenetic tree of mycovirus-related dsRNA viruses. The tree presented here is the consensus of two trees calculated using
phyML-maximum-likelihood (ML) and Bayesian (BI) methods, respectively. Numbers at various nodes indicate, respectively, SH-like approximate
likelihood ratio test (SH-aLRT) probabilities (above) and Bayesian posterior probabilities (below). The characteristics (numbers and sizes of genome
segments and particle morphology) of different viral lineages are shown. Question mark (?) indicated that characteristics were not determined for
all members of this lineage. The viral families that were proposed but have not been recognized by ICTV are indicated by asterisks, and their
names are not italicized. The names of the ICTV-recognized or proposed (but not yet recognized) virus species are written in bold italics or italics,
respectively. Pentagram indicates the two viruses reported in this study. The host range of viruses was indicated. This tree was rooted with ss(+)
RNA viruses. The scale bar corresponds to 0.5 amino acid substitutions per site. See Additional file 2: Table S1 in the supplemental material for
abbreviations of virus names and viral protein accession numbers.
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genomes (>9 kb) are much larger than those of known
totiviruses (Figure 4). It has been reported that the PgRV-2
and FgV-3 possibly do not form true virions [23,24]. It
remains to be determined if SsNSV-L has a capsid. The
CiTV-1-like lineage included two insect viruses and an
unclassified plant virus. Despite the similarity in genome
organization with members of the family Totiviridae, their
genomes (~8 kb) were slightly larger than those of typ-
ical totiviruses (4.6–7.0 kb) (Figure 4) and might not
assemble in conventional virions [30]. The P. gigantean
mycovirus dsRNA 1 (PgRV-1)-like lineage consists of
three large monopartite dsRNA viruses and no viral par-
ticles have been reported in association with infections
by PgRV-1 [24]. A mycovirus Nectria radicicola virus L1
(NrV-L1) is most closely related to partitiviruses and has
been assigned as an unclassified member of the family
Partitiviridae in database. However, its genome is 6 kb
in length [31], clearly suggesting that it is not likely to be
a partitivirus. Hence, it may represent a novel group of
monopartite dsRNA viruses.

The diverse bipartite lineages of mycovirus-related dsRNA
viruses
The family Partitiviridae generally consists of viruses
with bipartite genomes comprising two dsRNA seg-
ments. All members of this family clustered together
in the phylogenetic tree and could be further separated
into four clades: clade I-IV (Figure 3 and Additional
file 1: Figure S3). The recently isolated mycovirus
Rosellinia necatrix megabirnavirus 1 (RnMBV1), a
member of the proposed family Megabirnaviridae [9]
was most closely related to the PgRV-1-like monopar-
tite lineage (Figure 3), but it has a bipartite genome
encapsidated in isometric virions. Therefore, it may
represent a novel bipartite evolutionary lineage of
dsRNA viruses. More recently, a novel bipartite dsRNA
mycovirus Botrytis porri RNA virus 1 (BpRV1) was iso-
lated from Botrytis porri that belongs to a separate
clade distinct from those of other known RNA mycov-
iruses [32]. Interestingly, the BpRV1-related bipartite
dsRNA virus was also isolated from S. sclerotiorum in
our lab (Liu LJ et al., unpublished data). These results
indicated that there are diverse evolutionary lineages
of bipartite dsRNA viruses in nature.
The tripartite lineage of mycovirus-related dsRNA viruses
Although the typical patitiviruses have two genome
segments, some viruses in clade IV harbor three seg-
ments, two of which encoded CPs. These CPs formed
two sister groups in the CP tree and the two CPs in each
virus clustered within different groups (see Additional
file 1: Figure S3B), suggesting that a possible duplication
event occurred before the divergence of these viruses.
Because the genomes of many viruses in the clade IV
were not completely sequenced, it is not yet known
whether all members of this clade possess two CP genes.
The diverse quadripartite lineages of mycovirus-related
dsRNA viruses
Currently, ICTV recognizes six viruses as members or
probable members in the family Chrysoviridae [5]
(Figure 3). Phylogenetic analysis revealed that other
related viruses might also be members of this family
(Figure 3 and Additional file 1: Figure S2). The extended
family is a monophyletic group and can be further
divided into two subgroups: clade I and clade II. Mem-
bers of clade II have only 4 genome segments whereas
members of clade I generally have more than four
segments. At present, none of clade I viruses is recog-
nized as member or probable member of the genus
Chrysovirus. It is worth noting that Aspergillus mycov-
irus 1816 (AMV1816) has been incorrectly assigned by
the GenBank as an unclassified member of the family
Totiviridae in database. Four dsRNA segments have
been shown to be associated with this virus [33]. Our
phylogenetic analysis also suggests that it is probably a
member of Chrysoviridae.
Like members of the family Chrysoviridae, Alternaria

alternate dsRNA mycovirus (AaRV) [34] and Aspergillus
mycovirus 341 (AMV-341) have four genomic dsRNA
segments that are encapsidated in isometric virions.
However, each genomic segment has a 3′-poly (A) tail,
which is not found in chrysoviruses. In addition, the
dsRNA 4 segments of these two viruses (~1.5 kb) are
much shorter than those of chrysoviruses (~2.4 kb)
(Figure 4). Furthermore, phylogenetic analysis revealed
that these two viruses are distantly related to chryso-
viruses (Figure 3). These results suggest that the two
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Figure 4 Genomic organization and comparison of representative viruses in different dsRNA viral lineages. The Colored boxes and lines
represent open reading frames (ORFs) and non-coding sequences, respectively, roughly to scale: orange, RNA-dependent RNA polymerase (RdRp);
blue, capsid protein (CP); Brown beige, unknown function. Dotted line boxes indicate possible extension of the downstream ORFs by
frameshifting. The viral families that were proposed but have not been recognized by ICTV are indicated by asterisks, and their names are not
italicized. See Additional file 2: Table S1 in the supplemental material for abbreviations of virus names.
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viruses are members of a novel lineage of quadripartite
dsRNA viruses.
Rosellinia necatrix quadrivirus 1 (RnQV1), a novel

dsRNA virus, has recently been reported from Rosellinia
necatrix [35]. Its genome encompasses four segments
but all of which are much larger than those of chryso-
viruses (Figure 4). Interestingly, the genome of Amasya
cherry disease-associated mycovirus (ACDAV) also encom-
passes four segments but two of which putatively encode
RdRps that are related to each other [36] and which cluster
with RnQV1 in the phylogenetic tree (Figure 3). It has been
suggested that the two RdRps of ACDAV might derive
from two related viruses [35]. Although RnQV1 and
ACDAV clustered within the totiviral clade (Figure 3), the
feature of multipartite genome indicated that they repre-
sented a new lineage of quadripartite dsRNA viruses. Based
on the properties of RnQV1, a new family Quadriviridae
has been proposed [35].
Possible origin of multipartite dsRNA viral lineages
From both phylogenetic trees and network, we can
delineate different lineages of multipartite dsRNA viruses:
AaRV-like, RnQV1-like, RnMBV1 and chrysoviruses.
These are generally most closely related to certain mono-
partite dsRNA viruses and the monopartite viruses
were branching deeply at the base of the multipartite
viral lineages. These results suggest that multipartite
dsRNA viruses likely evolved from different monopar-
tite dsRNA viruses. The extra segments in monopartite
dsRNA viruses could be generated through gene acquisi-
tion (e.g. RnMBV1 and chrysoviruses) and/or genome
separation (e.g. RnQV1 and AaRV). In addition, phylo-
genetic analysis places the NrV-L1 at the base of partiti-
viral clade III (see Additional file 1: Figure S3B), raising
the possibility that the ancestor of clade III partitiviruses
possibly originated from NrV-L1-like monopartite viruses.
This finding raised our awareness of the possibility that
the partitiviruses in the three other clades probably also
evolved from different monopartite dsRNA viruses that
have yet to be discovered. Therefore, generation of multi-
partite genomes may be an important macroevolutionary
mechanism in dsRNA viruses.
Taxonomy of mycovirus-related dsRNA viruses
In this study, genome comparisons and phylogenetic ana-
lyses revealed that at least 10 monopartite, 3 bipartite, 1
tripartite and 3 quadripartite lineages of mycovirus-
related dsRNA viruses are known. Among these, some
lineages have been considered as members or tentative
members of the families, Totiviridae, Partitiviridae and
Chrysoviridae. However, the taxonomy of viruses belong-
ing to the other evolutionary lineages has yet to be consid-
ered. Because of differences in genome organization,
particle morphology and phylogeny from members of
these three families, the establishment of new virus fam-
ilies or new genera is warranted to accommodate the un-
classified dsRNA viral lineages.
Current taxonomy of genera in the family Partitiviri-

dae is based on viral hosts (plants or fungi). Our phylo-
genetic analysis, however, shown that partitiviral clade I
and II consisted of a mosaic of plant partitiviruses
(of genus Alphacryptovirus) and fungal partitiviruses
(of genus Partitivirus). Therefore, the host taxon is not a
distinguishing character and it does not reflect the true
evolutionary relationships of viruses. Because classifica-
tion of viruses based on phylogeny not only helps to
understand the evolution of viruses but also facilitates
the prediction of new virus emergence. Therefore, we
propose the establishment of four new genera to reflect
the four clades in family Partitiviridae.
It has been considered that dsRNA viruses are poly-

phyletic and have originated from different lineages of
positive-strand RNA viruses [37-39]. The families Parti-
tiviridae and Totiviridae have been suggested to belong
to the picorna-like superfamily [40]. Our study revealed
that members of the family Chrysoviridae and other
diverse evolutionary lineages of mycovirus-related dsRNA
viruses are closely related to totiviruses and partitiviruses.
Therefore, these viral lineages may also be included in
this expanded superfamily, remarkably expanding the
known diversity of the picorna-like viruses.
Identification of ‘phytoreo S7 domain’
The S7 protein domain is thought to be characteristic of
members of the genus phytoreovirus in family Reoviri-
dae. The finding that S7 domain homologs occur in
SsNsV-L, FgV-3 and PcV raised our interest in exploring
whether other viruses also have S7 domain homologs.
For this purpose, we performed PSI-BLAST searches
using the S7 domain sequences of these three viruses
and plant phytoreoviruses as seed sequences against
NCBI nr database. The results showed that homologs of
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S7 domain are widely distributed in diverse dsRNA viral
lineages (Table 1).
The S7 domain was found in all known chrysoviruses.

Interestingly, It occurs in both RdRp and p3 proteins of
Clade II chrysoviruses (p3 homolog in several members
is p4), but only found in the RdRps of Clade I chryso-
viruses. In fact, the 5′-terminal regions of RdRps in
Table 1 Viruses containing homologs of Phytoreovirus S7 dom

Taxonomy Virus name

Reoviridae Phytoreovirus Rice gall dwarf virus

Rice dwarf virus

Wound tumor virus

Tobacco leaf enation phytoreovirus

Homalodisca vitripennis reovirus

Reoviridae unclassified Scylla serrata reovirus SZ-2007

Endornaviridae Helicobasidium mompa endornavir

Tuber aestivum endornavirus

Gremmeniella abietina type B RNA

unclassified monopartite dsRNA viruses Sclerotinia sclerotiorum nonsegmen

Fusarium graminearum dsRNA myc

Diplodia scrobiculata RNA virus 1

Phlebiopsis gigantea mycovirus dsR

Phlebiopsis gigantea mycovirus dsR

Totiviridae unclassified Glomus sp. RF1 medium virus

Chrysoviridae clade II Penicillium chrysogenum virus rdrp

Amasya cherry disease associated c

Helminthosporium victoriae 145 S v

Aspergillus fumigatus chrysovirus rd

Verticillium chrysogenum virus rdrp

Cherry chlorotic rusty spot associate

Cryphonectria nitschkei chrysovirus

Anthurium mosaic-associated virus

Grapevine associated chrysovirus-1

Fusarium oxysporum chrysovirus 1

Amasya cherry disease associated c

Helminthosporium victoriae 145 S v

Cherry chlorotic rusty spot associate

Penicillium chrysogenum virus p3

Aspergillus fumigatus chrysovirus p

Verticillium chrysogenum virus p3

Cryphonectria nitschkei chrysovirus

Chrysoviridae clade I Tolypocladium cylindrosporum viru

Magnaporthe oryzae chrysovirus 1

Fusarium graminearum mycovirus-C

Aspergillus mycovirus 1816 rdrp

Agaricus bisporus virus 1 rdrp
aThe positions of Phytoreovirus S7 domain in proteins for alignment and phylogene
Clade II chrysoviruses are homologous with those of
their p3/p4 proteins [25] (Figure 5). The S7 domain is
located in these 5′-terminal homologous regions. The
homology between RdRp and other proteins was not
found in Clade I chrysoviruses.
In addition to four members in genus phytoreovirus,

we also found that the S2 protein (guanylyltransferase)
ain

Abbreviation Aa accession no. Position (aa) a

RGDV ABL67643.1 261–359

RDV NP_620530.1 258–362

WTV CAA32438.1 259–369

TLEPV AAT97064.1 260–370

HvReV YP_002790890.1 264–349

SsReV-SZ ADU86621.1 719–823

us 1 HmEV-1 YP_003280846.1 4681–4776

TaEV YP_004123950.1 2526–2632

virus XL1 GaBRV-XL1 YP_529670.1 2761–2862

ted virus L SsNsV-L JQ513382 893–991

ovirus-3 FgV-3 YP_003288789.1 866–964

DsRV-1 YP_003359178.1 586–680

NA 1 PgRV-1 YP_003541123.1 58–159

NA 2 PgRV-2 CAJ34335.2 838–933

GMRV-RF1 BAJ23142.1 11–111

PcV_rdrp YP_392482.1 79–188

hrysovirus rdrp ACD-CV_rdrp YP_001531163.1 57–166

irus rdrp HvV-145S_rdrp YP_052858.1 55–164

rp AfCV_rdrp CAX48749.1 80–185

VCV_rdrp ADG21213.1 72–178

d chrysovirus rdrp CCRS-CV_rdrp CAH03664.1 59–166

1 rdrp CnCV-1_rdrp ACT79258.1 71–177

rdrp AMAV_rdrp ACU11563.1 50–161

rdrp GACV-1_rdrp ADO60926.1 1–105

rdrp FoCV-1_rdrp ABQ53134.1 1–89

hrysovirus p4 ACD-CV_p4 YP_001531160.1 58–169

irus p4 HvV-145S_p4 YP_052861.1 77–183

d chrysovirus p4 CCRS-CV_p4 CAH03667.1 61–169

PcV_p3 YP_392484.1 97–206

3 AfCV_p3 CAX48753.1 91–196

VCV_p3 ADG21215.2 57–161

1 p4 CnCV-1_p4 ABI20758.1 1–104

s 2 rdrp TcV-2_rdrp CBY84993.1 47–162

rdrp MoCV-1_rdrp YP_003858286.1 43–159

hina 9 rdrp FgCV rdrp ADU54123.1 33–153

AMV1816_rdrp ABX79996.1 1–111

AbV-1_rdrp CAA64144.1 1–95

tic analysis were indicated.
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of Scylla serrata reovirus SZ-2007 (SsReV-SZ) [41], a
member of a proposed new genus in the family Reoviri-
dae, contains an S7 domain homolog at its 3′-terminal.
This domain was also identified in SsNsV-L-related
mycoviruses FgV-3, DsRV-1 and PgRV-2 as well as in
another unclassified monopartite dsRNA virus, PgRV-1.
Moreover, S7 domain homologs were also found in the
CP protein of the totivirus GMRV-RF1 and the polypro-
teins of three endornaviruses.
Compared with those of phytoreoviruses, the S7 do-

main in other viruses contains only partial sequence of
the S7 domain. Multiple alignment of the S7 domain
revealed that the sequences were likely to be conserved
in diverse dsRNA viral lineages (Figure 6). The function
of this domain in these non-phytoreoviruses is not
known. It will be of interest to determine whether it
plays a role in viral RNA binding and packaging.

Evolution of ‘phytoreo S7 domain’ in diverse viral
lineages
Comparison of the domain arrangement in relevant viral
proteins shows that the S7 domain is located down-
stream of the RdRp domain in SsNsV-L, FgV-3, DsRV-1
and PgRV-2. However, the S7 domain resides upstream
of the RdRp domain in endornaviruses, chrysoviruses
and PgRV-1 (Figure 5). In addition, this domain is also
found in other proteins, such as the CP of GMRV-RF1
and the guanylyltransferase of SsReV-SZ. These results
suggest that multiple recombination events may have
occurred among different viral domains or proteins.
To elucidate the possible evolution of the S7 domain

homologs, we constructed phylogenetic tree and network
for those from different viral lineages (Figures 7 and 8).
The S7 domains from five members of phytoreovirus clus-
tered together and formed a distinct clade in both tree and
neighbor-net. All of these from chrysoviruses also clustered
together. The phylogeny relationships of the p3/p4 of clade
II chrysoviruses were consistent with those of their RdRps,
suggesting that the ancestor of clade II chrysoviruses also
possessed the S7 domain in its RdRp and p3/p4. Consider-
ing that the branches of p3/p4 proteins were located at the
base of chrysoviruses clade and that the 5′-terminal
regions were homologous between RdRps and p3/p4s
(Figure 5), it is most likely that the S7 domains were firstly
obtained by the p3/p4 proteins of the ancestral clade II
chrysoviruses and then transferred to the RdRp proteins by
recombination during evolution. Given the close relation-
ships in the neighbor-net (Figure 8), the S7 domains of



Figure 6 Multiple alignments of the Phytoreo_S7 domain homologs from diverse viral lineages. The default color scheme for ClustalW
alignment in the Jalview program was used. Jnetpred is the consensus secondary structure prediction: alpha-helices are shown as red rods
and beta strands as green arrows. Quality is the quality level for the multiple alignments. See Table 1 for virus names and viral protein
accession numbers.
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clade I chrysoviruses may have been acquired by their pro-
genitor from those in RdRps of the ancestor of clade I
chrysoviruses via inter-species HGTs.
Some viruses from unrelated families constituted the

third clade. The positions of their S7 domains were dif-
ferent (Figure 5). This suggests that HGTs may have
occurred among these distant viruses. The closely
related four unclassified mycoviruses SsNsV-L, FgV-3,
DsRV-1 and PgRV-2 cluster together and the arrange-
ment of their S7 and RdRp domains were also similar,
suggesting that the ancestor of these four viruses may
have contained the S7 domain. Interestingly, PgRV-1 and
PgRV-2 that coinfect one fungal strain clustered together
but the positions of their S7 domains were different,
suggesting that HGT between these two viruses may have
occurred. Similarly, the endornavirus Helicobasidium
mompa endornavirus 1 (HmEV-1) [35] possibly acquired
its S7 domain from the DsRV-1-like virus via HGT.
dsRNA viruses represent an extremely divergent

group. Although RdRps are the most highly conserved
proteins among RNA viruses, there is little primary-
sequence similarity among those encoded by dsRNA
viruses from different genera, even those belonging to
the same family [1]. For example, the RdRps from sev-
eral distinct genera in the family Reoviridae show only
10–20% amino acid identity [42]. So far, the phylogenetic
relationship of members of Reoviridae with viruses in
other families or genera is not clear. Therefore, the obvi-
ous conservation of S7 domain in diverse dsRNA viral
lineages even from different families implies that it is
not likely to be the results of vertical inheritance. Further-
more, the S7 domain only occurred in certain viruses of a
given viral group; their phylogenies were not consistent
with those of RdRps. For example, only three members of
the family Endornaviridae have the S7 domains, and these
did not cluster together in S7 domain tree (Figure 6). In
addition, the S7 domains in the non-phytoreoviruses are
truncated and have different domain arrangement with
RdRps (Figure 5). Given these facts, the S7 domain
sequences in non-phytoreoviruses were most likely
acquired from ancestral phytoreoviruses and then horizon-
tally transferred repeatedly among these diverse dsRNA
viral lineages. This suggests that HGT between different
virus species is an important macroevolutionary mechan-
ism in dsRNA viruses.

Conclusions
In summary, we report the molecular properties of two
novel mycoviruses from S. sclerotiorum strain Sunf-M.
One is a monopartite virus representing a distinct evolu-
tionary lineage of dsRNA viruses and the other is a bipart-
ite virus, a new member of the family Partitiviridae.
Comprehensive phylogenetic analyses and genome com-
parisons revealed that there are at least ten monopartite,
three bipartite, one tripartite and three quadripartite
lineages in the known mycovirus-related dsRNA viruses
and those multipartite lineages possibly evolved from
different monopartite dsRNA viruses. Moreover, we found
that homologs of Phytoreo_S7 Domain are widely distribu-
ted in diverse non-phytoreovirus lineages, including,
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chrysoviruses, endornaviruses as well as some unclassified
dsRNA mycoviruses. We further provided convincing evi-
dence that multiple HGT events may have occurred
among dsRNA viruses from different families. Our study
provides an insight into the phylogeny and evolution of
dsRNA viruses and reveals that HGT between different
viruses and generation of multipartite genomes are import-
ant macroevolutionary mechanisms in dsRNA viruses.

Methods
Fungal strain and culture conditions
Wild type S. sclerotiorum isolate Sunf-M was obtained
from sunflower (Helianthus annuus) in Hohhot, Inner
Mongolia, China. Isolate was routinely cultured on PDA
at 20°C and stored at 4°C in PDA tube slants. Small my-
celial agar plugs were grown out on cellophane mem-
branes on top of PDA at 20°C for 2 day, and then the
mycelium was harvested from the cellophane mem-
branes for dsRNA extraction.
DsRNA extraction and purification
A previously described procedure for dsRNA extraction
[43] was used with minor modifications. Briefly, the myce-
lium was ground in liquid nitrogen with mortar and pestle.
dsRNA was extracted from the mycelium and purified to
remove traces of DNA and ssRNA by digestion with S1
nuclease and DNase I (TaKaRa). The dsRNA preparations
were fractionated on 1.0% agarose gel and stained with eth-
idium bromide. The isolated dsRNA was agarose gel puri-
fied with an AxyPrep™ DNA Gel Extraction Kit (Axygen).

cDNA synthesis, molecular cloning and sequencing
cDNA synthesis and molecular cloning of the L-dsRNA
was performed as previously described [3]. A single-
primer amplification method [44] with minor mod-
ifications was used to obtain the full-length clones of
S-dsRNA. In brief, a 3′ amino-blocked ligase adaptor
(5′-pGCATTGCATCATGATCGATCGAATTCTTTAG-
TGAGGGTTAATTGCC-NH2-3′) was ligated to the
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3′-end of the purified S-dsRNA segment using T4 RNA
ligase (Fermentas) and the adaptor-ligated dsRNA was
then reverse transcribed with a complementary primer
1 (5′-GGCAATTAACCCTCACTAAAG-3′). Following
treatment with RNase H (TAKARA), the cDNA strands
were annealed for 10 min at 80°C, for 16 h at 65°C and
for 3 h at 30°C and the resulting hybrid was filled in
with Klenow Fragment (TAKARA). The cDNA was
amplified with another complementary primer 2
(5′-TCACTAAAGAATTCGATCGATC-3′). The result-
ing products were recovered and purified with a gel
extraction kit (Axygen), cloned into the pMD18-T
vector (TaKaRa). DNA was sequenced by Sanger
methods at the Beijing Genomics Institute (BGI). The
full genomic sequences of L- and S-dsRNA were com-
pleted and confirmed by overlapping of cDNA clones
and each base was determined by sequencing at least
two independent clones from both orientations. New
sequences generated in this study were deposited in
GenBank under accession numbers: JQ513382, GQ280377.1
and GQ280378.1.

Northern blot hybridization
Northern hybridization analysis was performed as previ-
ously described [25]. To verify the authenticity of the
cDNA clones generated with the purified dsRNA, the
cDNA clones from L-dsRNA, S-1 and S-2 dsRNA seg-
ments were labeled with [32P] dCTP using a radio-
labeling kit (TaKaRa) and used to probe the different
RNA blots, respectively.

Data collection and sequence analysis
The genome and protein sequences of the dsRNA
viruses used in this study were downloaded from viral
genome databases at the NCBI website (http://www.ncbi.
nlm.nih.gov/genomes/GenomesHome.cgi?taxid10239).
The software package DNAMAN 7 (Lynnon Biosoft,
USA) was used for sequence annotations, including

http://www.ncbi.nlm.nih.gov/genomes/GenomesHome.cgi?taxid10239
http://www.ncbi.nlm.nih.gov/genomes/GenomesHome.cgi?taxid10239
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nucleotide statistics and ORF searching. Similarity
searches of NCBI GenBank database were conducted
using the online BLAST program (http://blast.ncbi.nlm.
nih.gov/Blast.cgi). Searches for protein domains were
performed using NCBI conserved domain database (CDD)
(http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi).
The pseudoknot structure of L-dsRNA was predicted by
the KnotSeeker program [45] and was visualized using
program VARNAv3-7 [46].

Sequence alignment and phylogenetic analysis
Multiple alignments of protein sequences were con-
structed using the M-Coffee web server (http://tcf_dev.
vital-it.ch/apps/tcoffee/play?name=mcoffee), which com-
bines the output of several popular aligners into one sin-
gle multiple sequence alignments. Phylogenetic trees were
estimated using two independent methods: Maximum-
Likelihood (ML) and Bayesian inference (BI) on the aligned
amino acid sequences. BI trees were constructed with
MrBayes-3.1.2 [47],using WAG models of amino acid sub-
stitution with invgamma (+I+Γ), performing two runs
each of four Monte Carlo Markov Chains (MCMCs), sam-
pling every 1000th iteration over 1.1×106 generations after
a burn-in of 101 samples. ML trees were inferred with
PhyML 3.0 [48], using the best-fit model selected by Prot-
Test2.4 [49] for each dataset, with SPRs algorithms and 8
categories of γ-distributed substitution rates. The reliability
of internal branches was evaluated based on SH-aLRT sup-
ports. The resulting BI and ML trees were then used to
construct the consensus tree for each alignment using
TREE-PUZZLE5.2 [50].
Considering that conflicting phylogenetic signals can

lead to tree reconstruction artifacts, we also constructed
phylogenetic networks with SplitsTree4 program (http://
www.splitstree.org/), using Neighbor-Net method and
WAG model of substitution. The unresolved branches
or conflicting phylogenetic signals in alignments could
be indicated by the box-like structures in neighbor-nets
graphs.

Additional files

Additional file 1: Figures S1–S3. This file includes 3 supplementary
figures. Figure S1 shows the alignments of 5′-untranslated regions (UTRs)
of SsPV-S S-1 and S-2 segments. Figure S2 shows Neighbor-Net analysis
of mycovirus-related dsRNA viruses. Figure S3 shows the ML
phylogenetic trees of the RdRps and CPs of viruses in the family
Partitiviridae.

Additional file 2: Table S1. This file contains 1 supplementary Table.
Tabe S1 lists the viruses selected for phylogenetic analysis.
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