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Abstract

Background: Parallel evolution can occur when common environmental factors exert similar selective forces on
morphological variation in populations in different geographic localities. Competition can also generate
morphological shifts, and if competing species co-occur in multiple geographic regions, then repeated instances of
competitively-driven morphological divergence (character displacement) can occur. Despite the importance of
character displacement for inferring the role of selection in morphological evolution however, replicated instances
of sympatric morphological divergence are understudied.

species.

Results: | tested the hypothesis that interspecific competition generated patterns of parallel morphological
divergence in multiple geographic locations where two competing salamander species, Plethodon jordani and P.
teyahalee, come into contact. | used geometric morphometrics to characterize head shape and found ecological
character displacement in sympatric localities on each of three distinct mountains (geographic transects), where
sympatric specimens displayed greater cranial differences and an increase in cranial robustness as compared to
allopatric specimens. Using a recently developed analytical procedure, | also found that the observed
morphological evolution within each species was consistent among transects; both in the total amount of
morphological change as well as the direction of evolution in the morphological data space. This provided strong
statistical evidence of parallel morphological evolution within species across replicate geographic transects.

Conclusions: The results presented here reveal that the morphological evolution of each species followed a
common evolutionary path in each transect. Because dispersal between sympatric locations among transects is
unlikely, these findings suggest that the repeated instances of character displacement have evolved in situ. They
also suggest that selection from competitive interactions plays an important role in initiating sympatric
morphological divergence in these species, and drives parallel sympatric morphological divergence between

Background

A major goal in evolutionary biology is to understand
how disparate taxa respond to similar selection pres-
sures. In some instances, distinct evolutionary responses
are observed in taxa experiencing common selective
environments [1], implying that the unique histories of
organisms can play a large role in shaping the path of
evolution [2]. Other times, common selective pressures
elicit similar (parallel) evolutionary responses, suggesting
that the evolutionary process can be repeatable. Some of
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the more tantalizing examples of parallel evolution
found in vertebrates include the evolution of distinct
body forms of freshwater fishes in different habitats
[3-6], lizard ecomorphs on different islands [7-9], recur-
ring phenotypes of cichlids in African Rift Lakes
[10-12], and distinct body forms and life history traits
found along predation gradients [13-16]. Such examples
reveal natural selection’s strong role in shaping trait
evolution [17,18], and suggest that repeated patterns of
parallel evolutionary change may contribute to diversifi-
cation at higher scales [19,20].

Parallel evolution can occur when common environ-
mental factors (e.g., salinity: [21,22]) or other habitat-
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specific attributes (e.g., differing predation levels: [16])
exert similar selective forces on morphological and life
history variation in populations in different geographic
localities. In addition, because evolutionary changes are
affected by underlying patterns of genetic variation
[23-25], parallel evolution can also occur if, within
populations, the genetic covariance patterns among
traits are similar. Under such a scenario, the common
genetic architecture exhibited within populations could
give rise to similar patterns of phenotypic evolution
among populations, resulting in parallel morphological
evolution. When this is the case, trajectories of phenoty-
pic evolution may also be expected to align closely with
the major direction of genetic variation, or g, [26-28].

Another factor that plays a key role in promoting
morphological change is interspecific competition,
which frequently enhances the morphological differences
between competitors (character displacement:
[18,29-32]). Competition can also generate patterns of
parallel evolution, if the two competing species co-occur
in multiple geographic regions, and if the competition
between them results in repeated instances of competi-
tively-driven morphological divergence in each region.
Indeed, replicated patterns of morphological divergence
due to competition have been identified in a number of
systems [4,6,33,34]. These examples demonstrate the
consistency of competitively-based selection pressures in
nature, and provide strong evidence of competition’s
role in generating parallel evolutionary diversification
across communities.

The salamanders of the genus Plethodon represent an
attractive study system for identifying replicate patterns
of morphological evolution resulting from interspecific
competition. Plethodon are widely distributed in the for-
ests of North America [35]. Extensive field collecting at
thousands of localities has rigorously documented their
geographic distributions, and their species-level phylo-
geny is becoming well-resolved [36,37]. Further, decades
of ecological research has shown that interspecific com-
petition is prevalent in Plethodon [38-41], and likely
influences community structure at both a local and
regional scale [42]. In addition, morphological changes
are often associated with competition in many commu-
nities [29,43-46], suggesting that morphological evolu-
tion can be driven by competitive interactions in this
group.

In the southern Appalachian Mountains, the interac-
tions of two species, Plethodon jordani and P. teyahalee,
have been particularly well characterized. These species
exhibit altitudinal distributions, with P. jordani inhabit-
ing higher elevations and P. teyahalee inhabiting lower
elevations. Although both species overlap widely in the
western portions of their ranges, in the eastern Great
Smoky Mountains, their overlap is more limited,
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occurring in a narrow zone at mid-elevations (Figure 1).
In this region, most localities that have been sampled
are allopatric, containing one or the other species, and
the sympatric zone is not continuous, but is restricted
to particular mountain ridges [47,48]; a pattern sugges-
tive of allopatric individuals colonizing sympatric local-
ities. Considerable ecological and behavioral work has
been performed on these sympatric, and neighboring
allopatric populations, and has demonstrated that inter-
specific competition is a dominant force in communities
where both species are found sympatric with one
another [39,47,49-52].

Recently, a morphological analysis revealed ecological
character displacement in head shape between the two
species [44]. In that study, greater head shape diver-
gence was identified between sympatric populations of
these species at several locations in the eastern Great
Smoky Mountains, relative to what was observed
between neighboring allopatric populations. The local-
ities examined originated from three distinct mountain
transects where prior behavioral work had identified
competitive interactions between these species
[39,49,51,52]. However, while sympatric morphological
differences were identified, it is unclear whether the tra-
jectories of evolutionary change exhibited by each spe-
cies from allopatry to sympatry were concordant among
geographic transects. Therefore it is not known if com-
petitive interactions between species have resulted in
repeated instances of parallel morphological evolution in
this system. The purpose of this study is to examine
patterns of character displacement between P. jordani
and P. teyahalee across multiple geographic transects to
determine whether in fact they are concordant. Specifi-
cally, I test the hypothesis that interspecific competition
has driven repeated patterns of morphological change in
each species across distinct regions, resulting in parallel
evolution of character displacement in regions of co-
occurrence.

Results

I quantified head shape of specimens from three distinct
mountain transects in the Great Smoky Mountains
(Figure 1). Each transect contained an allopatric locality
for P. jordani and an allopatric locality for P. teyahalee
(at high and low elevations respectively), and one
sympatric locality at mid-elevations where both species
co-occurred. Head shape was characterized with a set of
12 landmarks (Figure 2) and geometric morphometric
methods [53-55]. A multivariate analysis of variance
(MANOVA) on the resulting shape variables revealed
significant morphological differences between species
and between locality types, and identified a significant
species x locality interaction (Table 1). Previous analyses
[44] found morphological differences were greater in
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Figure 1 Map of study region. Upper Left: Map of the eastern United States. Right Center: Map of the Great Smoky Mountain National Park,
with collection localities from the USNM collections shown (red: P. jordani allopatric localities; blue: P. teyahalee allopatric localities; black:
sympatric localities for both species). Lower Left: Map of the study region, with the locations of three geographic transects circled: left = Taywa
Creek localities; center: Kephart Prong localities; right;, Heintooga Ridge localities. Allopatric and sympatric localities are designated with the same
colors as in the central figure. The boundary of the Great Smoky Mountain National Park is shown, and the light line denotes 1,200 m in

Figure 2 Landmarks used to characterize head shape of
salamanders. Positions of 12 anatomical landmarks used to
quantify head shape in Plethodon (image from [44]).

A\

sympatric localities than in allopatric localities, a pattern
consistent with character displacement. The results pre-
sented here were concordant with this result, but also
provided an assessment of patterns of divergence among
geographic transects.

To compare patterns across geographic transects, I
used a recently developed analytical approach to quan-
tify and compare vectors of morphological evolution
[56-58]. When morphological patterns were examined
among transects with this procedure, no differences
were found in the magnitude of morphological evolution
exhibited across transects for either P. jordani or for P.
teyahalee (Table 2). This implied that the amount of
morphological evolution within species was consistent
across the geographic transects. Similarly, there were no
differences in the orientation of morphological evolution
across transects for either species (Table 2), implying
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Table 1 Results from multivariate analysis of variance
(MANOVA) of head shape across three geographic
transects of Plethodon jordani and P. teyahalee in the
eastern Great Smoky Mountains.

Factor Dffactor Pillai’'s Approx. F Df,um, P
Trace Dfgenom

Species 1 0741 48874 18, 307 < 0.0001
Locality Type 1 0.794 65612 18, 307 < 0.0001
Geographic 2 0.783  11.015 36, 616 < 0.0001
Transect

Species X Locality 1 0.519 18373 18, 307 < 0.0001
Species X Transect 2 0289 2.888 36, 616 < 0.0001
Locality x Transect 2 0338 3482 36, 616 < 0.0001
Species x Locality 2 0.161 1499 36, 616 0.0327

X Transect

Table 2 Statistical comparisons of evolutionary vectors of
morphological change.

Vector Magnitude Vector Orientation

A: P. jordani HR KP TC HR KP TC
HR 0.1849 03192 0.6074 0.3665
NS NS NS NS
KP 0.01689 0.0309 26.785 04071
NS NS
TC 0.00871 0.02560 31.502 41.545
B: P. HR KP TC HR KP TC
teyahalee
HR 03363 08106 07965 05579
NS NS NS NS
KP 0.00871 03261 19.506 0.5069
NS NS
TC 0.00253 0.01224 25033 34.136

Upper block: results for Plethodon jordani: Lower block: results for P. teyahalee.
Pairwise differences in vector magnitude and vector orientation are shown
below the diagonal, and their significance levels (based on 9,999 random
permutations) are shown above the diagonal. Geographic transects are
designated as: HR = Heintooga Ridge, TC = Taywa Creek, KP = Kephart Prong.
Significance levels are compared to a Bonferroni corrected error rate of o =
0.0167. No pairwise comparison was significant.

that morphological evolution within species proceeded
in a similar direction across transects. Summary var-
iance statistics [57] were in accord with the pairwise
analyses, and were not significant for either the magni-
tude of morphological evolution or their direction of
evolution in the morphological data space (Varg;,. =
0.0000625, P = 0.1957; Varyent = 59.4819, P = 0.5058).
Finally, the observed patterns were not the result of sex-
ual dimorphism: significant differences in head shape
were identified between the sexes (Pillai’s trace = 0.503,
F = 591, P < 0.0001), but when sex was included in the
model, patterns of morphological evolution were consis-
tent with what was reported above (results not shown).
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Thus, sexual shape dimorphism did not bias estimates
of morphological evolution from allopatry to sympatry.
When viewed in the principal components plot, the
evolutionary patterns of morphological change were evi-
dent. I found that all three evolutionary vectors for P.
jordani were oriented similarly in the morphological
data space, indicating that the direction of morphologi-
cal evolution from allopatry to sympatry was concor-
dant. These vectors were also of similar length,
revealing that the amount of morphological evolution
exhibited from allopatry to sympatry was consistent
across transects as well (Figure 3A). Likewise, the three
evolutionary vectors for P. teyahalee were oriented simi-
larly, and identified a concordant amount of morpholo-
gical evolution from allopatry to sympatry in each
transect (Figure 3B). However, the evolutionary vectors
for P. teyahalee were oriented differently from those for
P. jordani, indicating that the direction of morphological
evolution differed between species (the angular differ-
ence between species vectors was 47.71°% P ,,q = 0.0001).
Specifically, the allopatric endpoints of all evolutionary
vectors were in a similar location in shape space (indi-
cating similar morphologies in each transect), while the
sympatric endpoints of all evolutionary trajectories were
found in different locations in shape space for each spe-
cies, signifying head shape differences between species
in sympatry. As in previous analyses [44], the morpholo-
gical evolution from allopatry to sympatry in both spe-
cies described a general increase in cranial robustness,
with sympatric specimens displaying relatively more
elongate jaws, and exhibiting a relative expansion in the
posterior region of the head (Figure 3C). In addition,
the jaw was relatively thicker in sympatric P. jordani as
compared to sympatric P. teyahalee (Figure 3C).

Discussion

The repeated evolution of similar morphological traits in
species inhabiting common environments has long been
treated as evidence of adaptation [17,18,59], and reveals
that environmentally-induced selection pressures can
generate parallel patterns of diversification. Similarly,
interspecific competition can drive parallel evolution,
when the competitive mechanisms between species are
comparable in distinct locations where competing spe-
cies co-occur. In this study, I examined morphological
divergence between two competing salamander species,
Plethodon jordani and P. teyahalee, in several distinct
regions in the eastern Great Smoky Mountains to deter-
mine whether trajectories of evolutionary change within
species were concordant among geographic transects. I
found significant morphological evolution in head shape
within species from allopatry to sympatry, revealing an
evolutionary response to interspecific competition. I also
found that morphological differences were enhanced in
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Figure 3 Principal components plot of head shape variation. (A) Data for Plethodon jordani are emphasized, and (B) data for P. teyahalee are
emphasized. The first two principal component axes explain 48.6% of the total variation in head shape. For each panel, individuals of the focal
species are shown in large, gray symbols, the other species in light symbols. Also displayed are least-squares means for each population, and

vectors of phenotypic evolution for each geographic transect. Geographic transects are shown as: Heintooga Ridge (solid lines and circles),
Taywa Creek (dashed lines and squares), Kephart Prong (dotted lines and triangles). (C) Phenotypic evolution vectors for each transect for both

deformation grid represents the allopatric populations for both species.

species in this study. Phenotypic means for allopatric populations are shown in gray; phenotypic means for sympatric localities are shown in
black. Thin-plate spline deformation grids depict typical head shapes for sympatric populations of P. jordani and P. teyahalee. A single

sympatry, a pattern consistent with character displace-
ment. Within species, the morphological evolution
exhibited was concordant among distinct geographic
transects, identifying a common pattern of morphologi-
cal change that implied parallel evolution. Finally, con-
siderable prior work on this system has documented
interspecific competition at these localities [39,49,51],
has ruled out alternative explanations for the observed
patterns [44], and has provided evidence of a link
between morphological variation and aggressive beha-
vior in this system [44]. Thus, for this system there is
empirical support for five of the six criteria for character
displacement (i & ii: chance and alternative explanations
ruled out, iii: independent evidence of competition, iv:

association of morphology to putative selective force, vi:
comparable relevant ecological parameters across local-
ities [6,60]). Together these suggest that the morpholo-
gical divergence observed in sympatry represents
replicated instances of character displacement, and that
selection from competitive interactions has driven paral-
lel evolution of morphological divergence in these
species.

In addition to parallel evolution, shared evolutionary
history can also produce common morphological pat-
terns across localities [8,61]. This arises when morpho-
logically similar species found in distinct locations are
also phylogenetically closely related. For the present
study, this scenario would occur if the sympatric
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populations were more closely related to one another
(within species) than they were to neighboring allopatric
localities, suggesting dispersal between sympatric loca-
tions as the cause of the similar morphological patterns.
While this remains a possibility, a number of factors
make it unlikely. First, as discussed previously, Pletho-
don are highly philopatric; they have small home ranges,
exhibit strong homing behavior [62], and genetic differ-
entiation among geographically proximate Plethodon
populations, even at distances as small as 200 meters,
has been identified [63]. Second, the straight-line dis-
tances between sympatric localities in this study are
between 25 and 80 times larger than the maximal
known dispersal distance for Plethodon [64], and the
geographic distances between sympatric localities at a
constant elevation are considerably larger. Finally,
despite extensive sampling of the geographic ranges of
these two species (1,097 total localities and 448 localities
in the Great Smoky Mountain National Park alone:
USNM collections: Figure 1), no additional sympatric
regions have been identified between the three transects
studied here. All other known localities between trans-
ects are allopatric, and contain only one or the other of
these species (the Taywa Creek sympatric zone does
extend a few kilometers beyond the study location, but
this represents less than one quarter of the approxi-
mately 26 kilometers between this transect and Kephart
Prong when traversed at mid-elevations). Thus, any dis-
persal from sympatric localities would have to proceed
through intervening regions of allopatry. Taken together,
this strongly suggests that the sympatric localities stu-
died here originated from dispersal from neighboring
allopatric populations of each species, and not from
other sympatric populations. As such, these localities
can be treated as independent origins of sympatry, and
parallel evolution is the most likely explanation for the
observed morphological patterns.

If it is true that these patterns represent independent
origins of parallel sympatric diversification, how can
they be explained in terms of the evolutionary processes
that may have caused them? Several evolutionary expla-
nations are possible, which may act separately, or in
concert to produce such patterns. One possibility is that
common genetic covariance among traits has directed
the path of evolution in common directions among
transects. This hypothesis suggests that genetic covar-
iance serves as a constraining force on the effect of
selection [65], resulting in correlated patterns between
genetic covariation and the direction of morphological
change. Direct tests of this hypothesis require an esti-
mate of the genetic covariance matrix within popula-
tions, which unfortunately are not available for this
system, as large scale quantitative genetics experiments
have not been performed on these long-lived species.
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An examination of the phenotypic covariance matrix as
a surrogate for the genetic covariance matrix did show
that the observed vectors of evolutionary change from
allopatry to sympatry were not always aligned with the
main direction of phenotypic variation within popula-
tions (results not shown), though the extent to which
genetic and phenotypic covariation are correlated in
these species has yet to be determined. Future studies
should examine the degree to which patterns of genetic
covariation affect the direction of phenotypic evolution
in these species.

Another possible explanation is that the observed pat-
terns of parallel diversification are an evolutionary
response to selection. Under this scenario, similar selec-
tion pressures occur in distinct geographic localities,
resulting in common evolutionary responses across
transects (note that both selection and genetic covar-
iance often interact to affect diversification patterns).
For the two species examined here, the common selec-
tive pressures are likely the result of interspecific com-
petition. This hypothesis is based on the observation
that interspecific competition and aggressive behavior is
known to be intense between these two species in these
sympatric localities [39,49-52]. Further, there is a signifi-
cant correlation between aggressive behavior and head
shape in these locations [44], suggesting a possible cau-
sal link between levels of aggression and changes in cra-
nial morphology in sympatric localities. The latter
observation is critical; as it provides a putative func-
tional link between the cause of selection and the evolu-
tionary response exhibited in morphological change.

Taken together, my findings suggest that selection
resulting from competitive interactions plays an impor-
tant role in initiating sympatric morphological diver-
gence, and appears to be the driving force responsible for
parallel evolution of character displacement across trans-
ects. Given the important role of interspecific competi-
tion for understanding morphological evolution in this
system, what does this suggest about broader patterns of
morphological evolution in the genus Plethodon? Based
on the prevalence of competition among species in the
genus Plethodon [38,41], I hypothesize that parallel evo-
lution of character displacement may be more wide-
spread. First, there are many species pairs that exhibit
similar geographic patterns to those seen in P. jordani
and P. teyahalee, with geographically distinct sympatric
localities found throughout their contact zone. This is
particularly the case for species in the P. cinereus species
group, where the wide-ranging P. cinereus is found sym-
patric in multiple locations with other competing species
(e.g., P. nettingi: [66,67]; P. hubrichti: [68]; P. hoffmani:
[29,69]). Further, morphological divergence has been
documented in certain sympatric localities for some of
these systems [29,45,46,69]; but see [70]. Thus, if
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interspecific competitive mechanisms are relatively con-
sistent across sympatric localities, it is possible that mor-
phological evolution could proceed similarly in multiple
locations for one or both competing species. This
hypothesis should be examined in future studies.

Finally, examining these patterns in light of phyloge-
netic history and other macroevolutionary trends may
lead to important insights into the relationship between
competition, morphology, ecology, and speciation in
Plethodon. As noted previously, interspecific competition
is prevalent in Plethodon [38,40,41], and morphological
evolution is often associated with interspecific interac-
tions [29,45]. Likewise, phylogenetic niche conservatism
appears common [71,72], as sister species tend to exhi-
bit similar environmental tolerances. Further, this spe-
cies-specific signal in niche use has been posited as
having a positive influence on allopatric speciation in
Plethodon, as closely related species exhibit similar
environmental tolerances but frequently display distinct
geographic ranges [71]. The morphological patterns
described here also exhibit a strong species-specific sig-
nal, and extending these analyses to a broader array of
Plethodon species would establish whether or not closely
related species exhibit similar morphological responses
to interspecific competition. If such patterns were iden-
tified, they would suggest that interspecific competition,
and subsequent morphological diversification, may play
an important role in the proliferation of the clade.
Under these circumstances, comparing patterns of mor-
phological evolution to patterns of niche conservatism
would allow one to determine the relative contributions
of competitively-induced morphological change and
environmental adaption to speciation and diversification
in the group.

Conclusions

This study characterized patterns of morphological evo-
lution from allopatry to sympatry in three mountain
transects where two salamander species, Plethodon jor-
dani and P. teyahalee, come into contact. I showed that
in each transect, sympatric morphological divergence
(character displacement) had likely evolved as a result of
interspecific competition. I further showed that within
species, the magnitude and direction of morphological
evolution was consistent, and that alternative explana-
tions cannot fully explain the observed patterns. The
findings presented here reveal that parallel evolution of
character displacement has occurred in these species,
and suggest a strong role for selection on the evolution
of diversification in this group.

Methods
A total of 336 adult salamander specimens from the
United States National Museum (USNM) were used in
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this study. These were part of a previous analysis [44],
and were collected from several localities in three alti-
tudinal transects in the eastern Great Smoky Moun-
tains (Figure 1). Each transect was found on a distinct
mountain ridge: Heintooga Ridge (HR) on Balsam
Mountain, Kephart Prong (KP) on Richland Mountain,
and Taywa Creek (TC) on Hughes Ridge (for addi-
tional locality information see [39,51,52]). In each
transect, localities where both species were present (i.
e., sympatric localities) were found at mid-elevations
(approximately 1200 - 1500 m), allopatric localities of
P. teyahalee at low elevations below the sympatric
localities, and allopatric localities of P. jordani at high
elevations above the sympatric localities. Thus, each
transect represented a competitive gradient between
allopatric localities of one species and sympatric local-
ities containing both species. Sympatric localities of
these transects were separated by straight-line dis-
tances of 7.8 km (KP-TC), 16.4 km (HR-KP), and 24.2
km (HR-TC) respectively (Figure 1). No additional
sympatric localities between these transects have been
found, and because Plethodon have low dispersal abil-
ities [63], with 300 m being the maximal dispersal dis-
tance ever recorded [64], dispersal between sympatric
localities is improbable. Rather, it is more likely that
sympatric localities were derived from neighboring
allopatric populations within transects.

To quantify morphology, I used geometric morpho-
metric methods [53-55]. These methods quantify the
shape of anatomical objects from the coordinates of
repeatable locations, after the effects of non-shape varia-
tion are mathematically held constant. First, the loca-
tions of 12 anatomical landmarks were recorded from
the head and jaw of each specimen (Figure 2). Speci-
mens were then optimally aligned using a generalized
Procrustes superimposition [73], and shape variables
were generated using the thin-plate spline [74] and stan-
dard uniform components [75]. For the present analysis,
variation in the gape of the jaw was also taken into
account. This was accomplished using the separate sub-
set method, where shape variables for the skull and jaw
were generated separately, and were subsequently com-
bined to provide an overall description of head shape
(see [44,76]). A total of 18 shape variables represented
the head shape of each specimen, and were used in all
multivariate analyses. The sex of each specimen was
also determined through gonadal inspection. Sex was
reliably determined for 328 individuals (176 males and
152 females).

I performed a number of statistical tests to examine
patterns of morphological evolution within and among
transects. First, to compare head shape variation among
species, localities, and transects, I conducted a full fac-
torial multivariate analysis of variance (MANOVA), with
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species, locality type (allopatry vs. sympatry), and trans-
ect as main effects. I then tested the hypothesis of paral-
lel evolution by statistically comparing patterns of
morphological evolution from allopatry to sympatry
within species among transects. To accomplish this, I
first quantified the observed morphological evolution for
each species in each transect as a multivariate vector,
defined as the difference between allopatric and sympa-
tric least-squares means from the MANOVA. Next, I
calculated the magnitude of each evolutionary vector
and its orientation in the morphological data space
[56,58], and pairwise differences in these values were
obtained. The within-species pairwise differences in
magnitude and orientation (three per species) were then
statistically evaluated using a residual randomization
procedure with 9,999 iterations as follows. Briefly, a
reduced model lacking the species x locality x transect
interaction term was calculated, from which predicted
values (i.e. least squares means) and residual values were
obtained. The residuals were then randomized, and
added to predicted values. The full model was recalcu-
lated with these data, random evolutionary vectors were
estimated, and pairwise differences in their magnitude
and orientation were calculated. The observed within-
species pairwise differences were then compared to dis-
tributions of random values to assess their significance
(for full statistical details see [57,58]). Statistical assess-
ments were made at an experiment-wise error rate of o
= 0.05 using Bonferroni correction. For this study, resi-
dual randomization was used rather than other resam-
pling procedures because it has superior statistical
power for assessing factorial designs [77]. Finally,
because sexual size dimorphism is present in many
plethodontids [78], the above analyses were repeated
with sex included as a term in the model, to account for
possible sexual dimorphism in head shape. Small sample
sizes of each sex in some localities precluded separate
analyses of males and females (<10 in each sex for most
allopatric localities).

The analyses above provided a pairwise assessment of
evolutionary concordance among transects. However, if
the overall variance among evolutionary vectors was also
small, this would reveal broader evidence of parallel evo-
lutionary change across the set of transects. To assess
this quantitatively, I calculated summary variance statis-
tics from the set of within-species pairwise differences
in vector magnitudes and the set of within-species pair-
wise differences in vector orientation [57], which were
then statistically assessed using the residual randomiza-
tion procedure described above. Patterns of morphologi-
cal evolution were also examined using scores along the
first two principal components (PC) using the shape
variables as data, and thin-plate spline deformation grids
[74] were used to facilitate biological interpretation of
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head shape changes. All statistical analyses were per-
formed in R 2.81 [79].
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