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Abstract
Background: Species of Tetrahymena were grouped into three complexes based on morphological
and life history traits: the pyriformis complex of microstomatous forms; the patula complex of
microstome-macrostome transformers; and the rostrata complex of facultative and obligate
histophages. We tested whether these three complexes are paraphyletic using the complete
sequence of the small subunit rDNA (SSrDNA).

Results: In addition to the 16 species of Tetrahymena whose SSrDNA sequences are known, we
sequenced the complete SSrDNA from the following histophagous Tetrahymena species;
Tetrahymena bergeri, Tetrahymena mobilis, Tetrahymena rostrata, and Tetrahymena setosa as well as the
macrostome species Tetrahymena vorax. We also included a ciliate tentatively identified as
Lambornella sp., a parasite of the mosquito Aedes sp. We confirmed earlier results using SSrDNA,
which showed two distinct clusters of Tetrahymena species: the australis group and borealis group.
The genetic distances among Tetrahymena are in general very small. However, all nodes were
supported by high bootstrap values. With the exception of T. bergeri and T. corlissi, which are both
histophagous and group as sister species, all other histophagous Tetrahymena species are most
closely related to a bacterivorous species. Furthermore, Lambornella sp. and T. empidokyrea, both
mosquito parasites, are sister species, although there is a considerable genetic distance between
them.

Conclusions: There has been parallel evolution of histophagy in the genus Tetrahymena and the
three classical species complexes are paraphyletic. As the genus Lambornella arises within the
Tetrahymena clade, it is not likely a defensible one.

Background
All species of the genus Tetrahymena are morphologi-

cally very similar. As such, ecological, morphological, bi-

ochemical, and molecular features have been used over

the years in attempts to classify them. The earliest classi-

fications were based on morphological and ecological da-

ta. Czapik [1] regarded the presence or absence of a

caudal cilium as an important character. Later, Corliss

[2] distinguished three morphological species complex-

es: the pyriformis complex with smaller, bacterivorous
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species and fewer somatic kinetics; the rostrata complex

with larger parasitic or histophagous species, more so-

matic kinetics, and the ability to form resting cysts; and

the patula complex with species that undergo micros-
tome-macrostome transformation. Within the complex-

es, particularly the pyriformis complex, species are

distinguishable by mating capacity and/or isozyme pat-

terns [3–5]. Finally, Corliss [6] suggested another ap-

proach based on the degree of parasitism. Since, the

Tetrahymena species are free-living, as well as faculta-

tive and obligate parasites, Corliss [6] suggested an evo-

lutionary lineage from free-living species, considering T.

pyriformis to be the basal species, to facultative para-

sites, and then to obligate parasites.

More recently, gene sequences of ribosomal DNA (rD-

NA) and histones have been used to determine relation-

ships among Tetrahymena species. Phylogenies based

on these sequences revealed that there is little divergence

between the Tetrahymena species [7–12]. The 5.8S

rDNA sequence is too short and consists of relatively

conserved regions, which make it difficult to resolve the

phylogenetic relationships among the species of a com-

plex [13,14]. Partial regions of the large subunit ribosom-

al DNA (LSrDNA) that have been sequenced are identical

for some species [9,10]. The small subunit ribosomal

DNA (SSrDNA) is longer and there are sufficient differ-

ences between the sequences to infer a stable topology

for most Tetrahymena species, with the exception of sev-
eral species of the australis group that share identical or

almost identical sequences [12]. Despite the high degree

of relatedness, the tree topologies inferred from these

analyses are consistent and well supported, separating

the species into two branches – the australis group and

the borealis group. According to the data inferred from

5S, 5.8S, and 23S rRNA, the species within the genus

Tetrahymena were clustered into six ribosets (i.e., sets of

species with similar sequences in the regions studied

[11]) and later molecular analyses by Nanney et al. [10]

generally confirmed these groupings. Riboset C corre-

sponds to the australis group while ribosets A1, A2, and

B include members of the borealis group.

In their LSrDNA analysis of several Tetrahymena spe-

cies, Nanney et al. [10] demonstrated that histophagous

and macrostome species grouped within clades of bacte-

rivorous species, and they concluded therefore that mac-

rostomy and histophagy arose by parallel evolution. By

sequencing and analyzing the SSrDNA of more histopha-

gous species, we further tested whether histophagy

evolved several times independently within the genus

Tetrahymena.

Results
Sequences and primary structure
The length of the SSrDNA sequences and EMBL/Gen-

bank accession numbers are as follows: Lambornella sp.,
1749 nucleotides (AF364043); Tetrahymena bergeri,

1748 nucleotides (AF364039); Tetrahymena mobilis,

1749 nucleotides (AF364040); Tetrahymena rostrata

(strain ID-3), 1750 nucleotides (AF364042); Tetrahy-

mena setosa (strain HZ-1), 1749 nucleotides

(AF364041); Tetrahymena vorax (strain V2S), 1672 nu-

cleotides (AF364038).

The SSrDNA sequences of all investigated Tetrahymena

species differ only in 69 positions, which are located in

the variable regions V1-V9 of the SSrRNA molecule Ad-

ditional file 1 Fig. 1). Over half the variable positions are

found in variable regions V2 and V4 (Fig. 1). The se-

quence of the histophagous T. mobilis is identical to

those of the two microstome species, T. tropicalis and T.

Figure 1
Secondary structure model of the small subunit ribosomal
RNA molecule of Tetrahymena bergeri. The model was con-
structed with the RNA Viz program [42] and shows 65 varia-
ble sites (in red). The additional 4 variable sites are missing in
the Tetrahymena bergeri sequence (cf. Additional file
1:Table1.xls).
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furgasoni, while the histophagous T. setosa shares an

identical SSrDNA sequence with the bacterivorous T. py-

riformis Additional file 2. Tetrahymena rostrata shows

only one mismatch in its sequence to T. canadensis and
T. borealis. The SSrRNA sequences of the latter two spe-

cies are identical as are those of T. hyperangularis and T.

pigmentosa Additional file 1 Additional file 2.

Tetrahymena bergeri, which was described by Roque et

al. [15] and which has been regarded as doubtful species,

has a unique SSrDNA sequence that differs in 9 nucle-

otide positions from its sister species T. corlissi.

Phylogenetic analyses
The two ophryoglenid species Ophryoglena cantenula

and Ichthyophthirius multifiliis and the tetrahymenid

species Glaucoma chattoni and Colpidium campylum

were chosen as outgroup species to test relationships

within the genus Tetrahymena. Since several species of

Tetrahymena show identical SSrDNA sequences, not all

sequenced Tetrahymena species were included in the

phylogenetic analysis.

The general topologies of the trees inferred from the four

different methods were quite similar (least-squares [LS],

neighbor-joining [NJ] – Fig. 2; maximum parsimony

[MP] – tree not shown; maximum likelihood [ML] – Fig.

3). The evolutionary distances within the australis group

and borealis group are very small Additional file 2. Be-

tween the species of these two main groups, however, the

distances are larger. Although the two main groups and

some of the branches therein were very well supported

by bootstrap values (Fig. 2) and ML support values (Fig.

3), other relationships within the genus Tetrahymena

remain unresolved. This is demonstrated by the MP

analysis, which computed 21 equally parsimonious trees

that all supported the two major groups, but differed in

the placement of the species within the clusters. The con-

sensus tree of the MP analysis could only resolve three

clusters: the australis group, the borealis group, and the

T. empidokyrea/Lambornella sp. pair. All other branch-

es were collapsed (tree not shown). Both distance analy-

ses (LS and NJ) computed stable and comparable trees
with high bootstrap support for the australis group and

Figure 2
A distance tree for tetrahymenid ciliates inferred from small
subunit ribosomal DNA sequences. The tree was derived
from evolutionary distances produced by the Kimura-2-
parameter correction model [35]. The numbers at the nodes
represent the bootstrap percentages of 1,000 for the least
squares method (LS [36]) followed by the bootstrap values
for the neighbor joining method (NJ) of Saitou and Nei [37].
Evolutionary distance is represented by the branch length
separating the species. The scale bar corresponds to 5 substi-
tutions per 100 nucleotide positions.

Figure 3
A maximum likelihood tree inferred from small subunit
ribosomal DNA gene sequences of tetrahymenid ciliates. The
tree was constructed using quartet puzzling. The numbers
are support values for the internal branches while the branch
lengths reflect maximum likelihood estimates of genetic dis-
tance [40].
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the borealis group and sufficient bootstrap support to

place T. empidokyrea and Lambornella sp. within the

australis group (Fig. 2). The ML analysis also showed

three clusters, with T. empidokyrea and Lambornella
branching basal to all other Tetrahymena species (Fig.

3).

In all analyses, T. bergeri and T. corlissi branched basal

within the borealis group (Fig. 2, 3). The other relation-

ships within the borealis group, however, have to be re-

garded as unresolved. The bootstrap support for a closer

relationship of the T. pyriformis and T. rostrata ribosets

is very low (39% [LS], 40% [NJ]), as well as the bootstrap

support for the cluster of the T. thermophila and T. trop-

icalis ribosets (42% [LS], 50% [NJ]). Within the T. pyri-

formis branch, the relationship to T. vorax is only

supported by 50% [LS, NJ] bootstrap (Fig. 2).

Tetrahymena bergeri is confirmed as a valid species,

closely related to T. corlissi but only distantly related to

T. rostrata, which it resembles morphologically (Fig. 2,

3). The three newly-sequenced species, T. rostrata, T. se-

tosa, and T. mobilis, each group together with a bacteriv-

orous species, relationships supported by high bootstrap

values (Fig. 2, 3).

The two Tetrahymena species isolated from mosquitoes,

Lambornella sp. and T. empidokyrea, grouped together

within the Tetrahymena clade. The evolutionary dis-

tance that separates Lambornella sp. and T. empidoky-

rea (i.e., d = 0.0042) is within the range of those

separating other valid species Additional file 2.

If the different modes of nutrition are traced on the phy-

logenetic tree, it is evident that the two macrostome spe-

cies T. vorax and T. patula are interspersed among the

microstome species and that most of the histophagous

species have a microstome species as sister group (Fig. 4,

5). To address the question which nutritional strategy

can be regarded as ancestral, we performed character

tracing with two different assumptions. In the first tree

(Fig. 4), bacterivory is considered to be ancestral, and it

shows under these circumstances that histophagy would

have evolved five times independently within the genus

Tetrahymena and that macrostomy would have evolved

twice from bacterivory. If histophagy is considered to be

the ancestral nutritional strategy (Fig. 5), bacterivory

would have evolved five times within the genus and mac-

rostomy would have evolved once from a bacterivorous

and once from a histophagous ancestor. In both models

five parallel steps are necessary to construct the topolo-
gy.

Figure 4
Character state distribution of nutritional life history strategy
of Tetrahymena species. The tree topology was derived by
maximum parsimony analysis [38] and characters were
traced using MacClade [41]. Bacterivory was assumed to be
ancestral.

Figure 5
Character state distribution of nutritional life history strategy
of Tetrahymena species. The tree topology was derived by
maximum parsimony analysis [38] and characters were
traced using MacClade [41]. Histophagy was assumed to be
ancestral.
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Discussion
Several phylogenies of the genus Tetrahymena have

been constructed, based on various molecules like 5S and

5.8S rRNA [13,14], SSrRNA [12], LSrRNA [9–11], and
histone H3II/H4II [7]. They are consistent in their topol-

ogies and separate two main clusters within the genus

Tetrahymena: the australis and the borealis group. The

first group is homogenous and consists of species of the

riboset C as defined by Preparata et al. [11] (= T. australis

group). The second group is more heterogeneous and

comprises both ribosets A (A1: T. thermophila group and

A2: T. tropicalis/borealis group) as well as riboset B (T.

pyriformis group). In the analyses of Preparata et al.

[11], the two macrostome species T. paravorax and T.

caudata did not group with any of the ribosets but

branched basal to all other Tetrahymena species. As in

the analyses of Nanney et al. [9,10], our trees depict the

australis group as a separate branch, coinciding with ri-

boset C. The parasitic species T. empidokyrea and Lam-

bornella sp. grouped basal within this clade. The

topologies within the borealis group are in agreement

with the SSrRNA tree of Sogin et al. [12]. However, the

branching pattern is not highly supported by the boot-

strap values, since the genetic distances for the SSrRNA

within those main clusters are small, even for Tetrahy-

mena species. In comparison with the results of Brunk et

al. [7] who sequenced the histone H3II/H4II regions,

our tree topologies show only minor differences. In their

analysis, T. borealis and T. rostrata were closely related
to T. tropicalis whereas in our analyses, T. borealis and

T. rostrata were always grouped with the T. pyriformis

group (=riboset B).

The three newly sequenced species T. mobilis, T. setosa,

and T. rostrata each grouped with a bacterivorous spe-

cies as the closest relative. Moreover, the sequences of T.

mobilis and T. setosa are identical with their sister spe-

cies and T. rostrata shows only one mismatch to T. bore-

alis, a pattern that appears in other sequenced molecules

as well. Nanney et al. [10] found the partial LSrRNA se-

quences of T. pyriformis identical to that of T. setosa

while the partial LSrRNA sequence of T. canadensis

(identical to T. borealis in their SSrDNA) was identical to

that of T. rostrata. Sogin et al. [12] identified identical

SSrRNA sequences for several Tetrahymena species.

Our results increase the number of Tetrahymena species

that share identical SSrDNA sequences. However, those

species that are identical in their rDNA sequence can be

distinguished morphologically or isozymically. Since

Tetrahymena species are polymorphic for many isozym-

ic traits, some of the species were defined on the basis of

their specific isozymic characteristics [3,5]. However, the

data derived from isozyme studies cannot be reliably

used for the construction of phylogenetic trees within the
genus Tetrahymena. If the rDNA trees are compared to

the tree inferred from isozymic characters, a general ac-

cordance is achieved, but the species of ribosets A1 and

A2 are scattered throughout the isozymic dendrogram

[9].

Tetrahymena bergeri is confirmed as a valid species

with a unique SSrDNA sequence and life cycle. Tetrahy-

mena bergeri is closely related to T. corlissi, but several

morphological and biological characteristics distinguish

them from each other [15,16]. The main differences are

the rostrum of T. bergeri, the infraciliature on the apical

part of the cell, the oral infraciliature, the location of the

pores of the contractile vacuole, and the resting cyst,

which has not been observed for T. bergeri. Tetrahyme-

na rostrata resembles T. bergeri morphologically [15],

but based on life cycle features and such morphological

characters as the polar basal body complex and minor

differences in the buccal structures, Lynn [16] recog-

nized them as two different species. Our results reveal

that there is a large genetic distance between them, sup-

ported by high bootstrap values of the branching pattern.

Thus, the rostrata complex as defined by Corliss [2] is

shown to be a paraphyletic assemblage of species with a

convergent life cycle but not a close genetic relationship.

The Lambornella species, presumably derived from the

tree-hole Aedes mosquito, grouped with T. empidokyrea

within the clade of Tetrahymena species. There is

enough evolutionary distance between Lambornella sp.
and T. empidokyrea to separate them as two different

species. Another species of Lambornella, L. clarki,

grouped within the genus Tetrahymena in an analysis of

the D2 domain of the LSrDNA, much closer to other Tet-

rahymena species than T. paravorax [10]. In fact, Nan-

ney et al. [10] showed that Lambornella clarki had a

close relationship to T. corlissi. However, the Lambor-

nella species in our analysis grouped with a different ma-

jor cluster from T. corlissi, and this had high bootstrap

support. Since we were unable to culture and stain our

Lambornella species, it might have been a contaminant

Tetrahymena from the tree-hole habitat. In our analysis

T. corlissi is the sister species to T. bergeri and these two

species grouped basal to the ribosets A and B (i.e., the

thermophila-borealis/tropicalis and pyriformis

groups). Since Lambornella sp. and T. empidokyrea also

branched basally within the riboset C (i.e., T. australis

group), this might explain the affinity of L. clarki and T.

corlissi observed in the analysis of Nanney et al. [10],

which included a different set of Tetrahymena species.

Additionally, the method used by Nanney et al. [10] is

most reliable for closely related species (i.e., within a

species group), but shows limitations for more distantly

related taxa. Taxonomically, another mosquito-parasit-

izing hymenostome species, Lambornella stegomyiae
Keilin, 1921, had been assigned to the genus Tetrahyme-
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na as T. stegomyiae [17]. Corliss & Coats [18] transferred

it back to the genus Lambornella when they described a

second species, L. clarki. The main generic character

separating Lambornella from Tetrahymena is the cutic-
ular cyst of Lambornella from which it invades the

haemocoel of its larval host. Our data show that the ge-

netic distances between Lambornella sp. and the Tet-

rahymena species are in most cases smaller than the

ones between the mosquito parasite T. empidokyrea and

other species of Tetrahymena (cf. Fig. 2). Further analy-

ses must be performed to test these placements of Lam-

bornella within the genus Tetrahymena. If they prove to

be correct, the genus Lambornella has to be regarded as

invalid.

Our results support the claim that histophagy has

evolved within the genus Tetrahymena several times in-

dependently. If the mode of food uptake is traced on the

phylogenetic distance tree, it is evident that the two mac-

rostome species are interspersed among the microstome

species. This confirms the LSrRNA trees of Nanney et al.

[9,10] in which the macrostome species are interspersed

among the bacteria-feeding species while the other two

macrostome species – T. paravorax and T. caudata –

grouped basal to all Tetrahymena species. Most of the

histophagous species we studied have a microstome spe-

cies as sister taxon. Therefore, the three complexes – py-

riformis, patula, and rostrata – must be regarded

paraphyletic.

Based on our genetic distance tree we traced the charac-

ter of food uptake under two different assumptions: the

first assumption was that bacterivory was ancestral; and

the second assumption was that histophagy was ances-

tral. Under both assumptions, there would have been

five parallel steps necessary to construct the topology.

The two macrostome species that we studied both

grouped among the more derived Tetrahymena species;

therefore, we did not assume macrostomy to be ances-

tral. Macrostome Tetrahymena species can be bacteriv-

orous and morphologically similar to other

bacterivorous Tetrahymena under certain conditions,

but they are able to rearrange and enlarge their buccal

ciliature and subsequently live as carnivores (see [19]).

Histophagous species have a rather complex life cycle,

often with cyst formation and some morphological trans-

formation. The histophagous species are either mostly

free-living (i.e., T. bergeri, T. mobilis, T. setosa), faculta-

tively parasitic (i.e., T. corlissi in invertebrates and lower

vertebrates, T. rostrata in invertebrates), or apparently

obligate parasites of mosquitoes (i.e., T. empidokyrea,

Lambornella sp.). Hill [20] made the observation that

Tetrahymena species must be highly derived based on
their loss of biosynthetic abilities: they require 10 amino

acids, 6 vitamins, guanine, and uracil; they have no urea

cycle enzymes; and they probably make neither sterols,

glutathione, nor carbamylphosphate. Could the genus

have evolved from a Tetrahymena-like ancestor that was
histophagous and that reverted to bacterivory or did his-

tophagy emerge numerous times within the genus whose

ancestor was bacterivorous? Since character state distri-

butions for these two scenarios require an equal number

of steps, we can make no certain conclusion at this time.

However, we prefer the first model, which suggests the

parallel evolution of histophagy from a bacterivorous an-

cestor. As different potential invertebrate and vertebrate

host species evolved, it is possible that parallel evolution

of histophagy within the genus Tetrahymena occurred to

exploit these new habitats. An intriguing nutritional cor-

relation is recorded by Hill [20]. He noted that, com-

pared to bacterivorous pyriformis species, sterol is

required for growth of T. corlissi, T. setifera (=T. setosa),

and T. paravorax while phospholipid additions aid the

growth of these fastidious species, T. corlissi, T. limacis,

T. patula, and T. vorax. Could it be that sterol and phos-

pholipid dependence evolved as these species exploited

histophagy and macrostomy as nutritional life history

strategies?

Our study demonstrates that the tetrahymenine ciliates

have diversified as genetically isolated gene pools that

are adapted to a variety of distinctive ecological niches.

This rapid diversification may have occurred within the
last 158 million years, since the late Jurassic [21]. Based

on the genetical diversity within the genus Tetrahyme-

na, the hypothesis that protist diversity is limited [22,23]

must be questioned. It is obvious that morphological

similarity does not reflect genetical identity nor does it

necessarily reflect the ecological niche: morphologically

similar Tetrahymena species may be genetically very dif-

ferent and may be either bacterivorous or histophagous.

Further research on the genetic diversity within and be-

tween species of ciliates is needed to determine how

widespread is this disconnect between morphology and

genetics.

Conclusions
Within the genus Tetrahymena, two main clusters can

be separated by molecular phylogenetic analyses: the

australis and the borealis group. Generally, genetic dis-

tances for the SSrDNA among the species within those

two clusters are very small. Our results distinguish Tet-

rahymena bergeri from any other Tetrahymena species.

The other three newly sequenced, histophagous species

T. mobilis, T. setosa, and T. rostrata each group with a

bacterivorous species as the closest relative and show

identical or almost identical sequences to their sister

species. Thus, the rostrata complex of histophagous Tet-
rahymena is shown to be a paraphyletic assemblage of
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species with a convergent life cycle but not a close genetic

relationship. This supports the model of parallel evolu-

tion of histophagy from a bacterivorous ancestor within

the genus Tetrahymena, triggered by the evolution of
different potential invertebrate and vertebrate host spe-

cies.

Materials and methods
Source of the species strains and culturing
The histophages, Tetrahymena rostrata (strain ID-3,

ATCC #30770) and Tetrahymena setosa (strain HZ-1,

ATCC #30782), and the macrostome Tetrahymena vo-

rax (strain V2S, ATCC #30421) were obtained from

ATCC (American Type Culture Collection, Manassas, VA,

USA). The histophage Tetrahymena bergeri was ob-

tained by D. Lynn from the culture collection at the Uni-

versité de Clermont-Ferrand in 1976, and has been

maintained in our laboratory since then. A culture of the

histophage Tetrahymena mobilis was a gift from W.

Foissner, Salzburg, Austria. The species was described as

Saprophilus mobilis (Kahl, 1926). In an reinvestigation,

Foissner W & Schiftner U (in prep.) found that it belongs

to the genus Tetrahymena (W. Foissner, pers. comm.).

All species except T. mobilis were cultured in proteose

peptone-yeast extract medium (1.25 g/l dextrose anhy-

drous, 5 g/l proteose peptone, 5 g/l yeast extract) with a

biweekly transfer. Tetrahymena mobilis was cultured in

spring water with fragmented mealworms (Tenebrio

molitor) as food source. The species, tentatively identi-
fied as a Lambornella species, was isolated from a sam-

ple derived from a tree-hole Aedes mosquito and

provided to us by the laboratory of J. 0. Washburn and J.

R. Anderson (University of California, Berkeley).

DNA extraction and sequencing
Lambornella sp., T. bergeri, T. mobilis, T. rostrata, and

T. setosa were harvested by centrifugation, and washed

in TE buffer (10 mM Tris base, 1 mM EDTA, pH 8.0).

DNA extraction followed the standard protocol of Sam-

brook, Fritsch and Maniatis [24]. The DNA extraction of

T. vorax followed the protocol of Walsh, Metzger and

Higuchi [25]. One ml of the culture was centrifuged and

the supernatant was discarded. Then, 200 µl of 5%
Chelex ® 100 (Sigma, Oakville, ON, Canada) were added

to the pellet. The mixture was vortexed, and incubated

for 30 min in a waterbath at 56°C. Then, the mix was

boiled for 8 min at 100°C and vortexed again. Finally, the
sample was centrifuged at 16,000 g for 3 min in an Ep-

pendorf Microcentrifuge 5415C, and 15 µl of this tem-

plate were used for the subsequent PCR reaction. The

PCR amplification of the SSrRNA genes was performed

in a PTC-100™ thermal cycler (MJ Research Inc., Water-

town, MA) or in a Perkin-Elmer GeneAmp 2400 thermal

cycler (PE Applied Biosystems, Mississauga, ON, Cana-
da). The SSrDNA of T. vorax was amplified using the in-

ternal forward primer 82F (5'-

GAAACTGCGAATGGCTC-3' [26]) and the Medlin B re-

verse primer (5'-TGATCCTTCTGCAGGTTCACCTAC-3'

[27]). For all other species, the universal eukaryotic
Medlin A forward primer (5'-AACCTGGTTGATCCT-

GCCAGT-3' [27]) and the reverse primer 5'-TTGGTC-

CGTGTTTCAAGACG-3' [8] were used in the PCR

reactions. The SSrDNA of Lambornella sp. was subse-

quently cloned and sequenced following previously de-

scribed methods [28]. PCR products were purified using

the GeneClean kit (BIO/CAN, Mississauga, ON, Cana-

da). They were sequenced in both directions using an

ABI Prism 377 Automated DNA Sequencer (Applied Bio-

systems Inc., Foster City, CA), using dye terminator and

Taq FS with three to four forward and four reverse inter-

nal universal SSrRNA primers [26].

Sequence availability and phylogenetic analysis
The nucleotide sequences used in this paper are available

from the GenBank/EMBL databases under the following

accession numbers: Colpidium campylum X56532 [29];

Glaucoma chattoni X56533 [29]; Ichthyophthirius mul-

tifiliis U 17354 [30]; Ophryoglena catenula U 17355

[30]; Tetrahymena australis X56167 [12]; Tetrahymena

borealis M98020 [12]; Tetrahymena capricornis

X56172 [12]; Tetrahymena corlissi U 17356 [31]; Tet-

rahymena empidokyrea U 36222 [31]; Tetrahymena

hegewischi X56166 [12]; Tetrahymena hyperangularis

X56173 [12]; Tetrahymena malaccensis M26360 [12];
Tetrahymena patula X56174 [12]; Tetrahymena pig-

mentosa M26358 [12]; Tetrahymena pyriformis is

X56171 [12]; Tetrahymena thermophila M 10932 [32];

and Tetrahymena tropicalis X56168 [12].

The alignment of the sequences was performed with the

Dedicated Comparative Sequence Editor (DCSE) pro-

gram [33] and further refined by considering secondary

structural features of the SSrRNA molecule. Genetic dis-

tances were calculated with the DNADIST program of

the PHYLIP package, ver. 3.51c [34] based on the Kimura

2-parameter model [35]. The programs FITCH (Fitch-

Margoliash least squares method [36]) and NEIGHBOR

(neighbor-joining method [37]) of this package were

used to construct distance trees. A maximum parsimony

analysis was performed with PAUP*, ver. 4.0 [38]. Both

parsimony and distance data were bootstrap resampled

640 times (FITCH) and 1,000 times (NEIGHBOR,

PAUP) [39] respectively. PUZZLE, ver. 4.0.2 (maximum

likelihood method [40]) was used to construct a maxi-

mum likelihood tree with support values for the internal

branches and maximum likelihood branch lengths.

Out of the most parsimonious trees we chose the one that

showed basically the same topology as the distance tree
and imported it into MacClade ver. 3.0 [41] in order to
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perform the character mapping for histophagy, macros-

tomy, and bacterivory.

Abbreviations
LS     - least-squares

LSrDNA - large subunit ribosomal DNA

ML     - maximum likelihood

MP     - maximum parsimony

NJ     - neighbor-joining

PCR    - polymerase chain reaction

SSrDNA - small subunit ribosomal DNA
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