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Diversity of plant assemblages dampens 
the variability of the growing season phenology 
in wetland landscapes
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Abstract 

Background: The functioning of ecosystems is highly variable through space and time. Climatic and edaphic factors 
are forcing ecological communities to converge, whereas the diversity of plant assemblages dampens these effects 
by allowing communities’ dynamics to diverge. This study evaluated whether the growing season phenology of 
wetland plant communities within landscapes is determined by the climatic/edaphic factors of contrasted regions, by 
the species richness of plant communities, or by the diversity of plant assemblages. From 2013 to 2016, we monitored 
the phenology and floristic composition of 118 wetland plant communities across five landscapes distributed along a 
gradient of edaphic and climatic conditions in the Province of Québec, Canada.

Results: The growing season phenology of wetlands was driven by differences among plant assemblage within 
landscapes, and not by the species richness of each individual community (< 1% of the explained variation). Variation 
in the growing season length of wetlands reflected the destabilizing effect of climatic and edaphic factors on green-
up dates, which is opposed to the dampening effect of plant assemblage diversity on green-down dates.

Conclusions: The latter dampening effect may be particularly important in the context of increasing anthropogenic 
activities, which are predicted to impair the ability of wetlands to adapt to fluctuating environmental conditions. Our 
findings suggest that stakeholders should not necessarily consider local species-poor plant communities of lower 
conservation value to the global functioning of wetland ecosystems.

Keywords: Plant phenology, Diversity stability relationship, Biodiversity ecosystem functioning, Temporal asynchrony, 
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Background
The spatial and temporal variability of ecosystems has 
received a great deal of attention in the last decades 
in the context of biodiversity loss, climate change and 
their impact on ecosystem functioning. Ecosystem 
functioning is known to vary (i) among landscapes due 

to their environmental context, especially edaphic and 
climatic conditions [1]; (ii) within landscapes because 
individual communities respond differently to local 
conditions at the landscape level [2–5]; (iii) inter-
annually due to temporal variation in edaphic and cli-
matic conditions [1, 5]; and (iv) within communities 
because individual species respond differently to local 
conditions at the community level [6–10]. In temper-
ate and arctic regions, factors such as climate constrain 
the onset and offset of ecosystem processes [1]. During 
the growing season, competition for resources induces 
species-specific responses to environmental conditions, 
which may drive the observed variation in growth 
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among ecological communities within landscapes 
and dampen the effect of edaphic and climatic condi-
tions [4, 11]. The relative importance of these different 
sources of variation on ecosystem functioning has yet 
to be quantified in natural conditions and the dampen-
ing effect of the diversity of plant assemblages remains 
to be investigated.

Plant phenology is a key functional trait that links 
growth and reproduction events to the functioning of 
ecosystems [1]. Over large geographic extents, phenology 
is driven by the effect of climatic and edaphic factors on 
plant growth and stress tolerance [12–14]. In turn, plant 
phenology determines several ecosystem functions, such 
as pollination [15], herbivory [16] and carbon uptake 
[17]. One main advantage of studying plant phenology is 
that the timing of biological events can be monitored at 
high spatial and temporal resolution through satellite or 
time-lapse imagery [18, 19].

Although climatic and edaphic factors are important 
determinants of plant phenology at both large and small 
observational scales, recent studies also emphasized the 
importance of plant species richness and composition on 
phenology [20–22]. Species subjected to similar climatic 
and edaphic conditions tend to show large inter-specific 
differences in their phenology [19, 23–26]. For example, 
Wilsey et  al. [26] compared grassland communities in 
northern latitudes and found that their growing season 
length differed by nearly 40 days. A study by Meng et al. 
[24] reported large inter-annual variations in the flower-
ing sequence (i.e., ranking order) of 15 co-occurring plant 
species. Thus, the biodiversity of plant assemblages could 
be an important driver of plant phenology by introduc-
ing spatial variability and temporal asynchrony between 
communities within landscapes.

Conservation biologists use estimates of plant species 
richness to characterize temporal changes in the eco-
logical dynamics of both ecological communities and 
landscapes. Yet, the role of plant species richness on the 
regulation of plant phenology was investigated in a few 
cases only. A lengthening of the growing season with 
increasing plant species richness at the landscape level 
was observed across six biogeographic regions of central 
Europe, independently of altitude and land-use descrip-
tors [21]. Rheault et al. [22] monitored 28 wetland plant 
communities and showed that the growing season length 
was, on average, 30 days longer in species-rich commu-
nities. However, the latter authors noted that the rela-
tionship between plant species richness and growing 
season length was contingent on the climatic conditions 
[22]. Studies of plant phenology have yet to disentangle 
the relative importance of species richness, community 
asynchrony, and community temporal variance on the 
dynamics of ecosystems.

The coefficient of variation of an ecosystem function 
(e.g., aerial biomass, growing season length) measured on 
several occasions is a standard measure of temporal vari-
ation; i.e., the reciprocal of stability. Using this metric, 
three key variables determine the temporal variability of 
a plant community [27]: (i) species asynchrony, (ii) spe-
cies temporal variance and (iii) species average function-
ing. Species asynchrony is a measure of how temporally 
de-correlated is the functioning of each species relative 
to the others in the community. The variability of a plant 
community will be low (i.e., stability will be high) if spe-
cies asynchrony is high and if species temporal variance 
is low [27]. The above principles can be scaled-up to the 
landscape level such that the variability is this time deter-
mined by: (i) community asynchrony, (ii) community 
temporal variance and (iii) community average function-
ing. For the diversity of plant assemblages to stabilize the 
functioning of ecosystems, the expectation is that com-
munity asynchrony is an important determinant, while 
community temporal variance is comparatively less 
important. High spatial variability in the average func-
tioning of communities is also stabilizing because it buff-
ers differences among landscapes.

The objective of this study was to evaluate whether the 
growing season phenology of wetland plant communities 
within landscapes is determined by climatic and edaphic 
factors, by the diversity of species within plant communi-
ties, or by the diversity of plant assemblages among com-
munities. The approach that we developed in this paper 
consists of partitioning the growing season phenology of 
plant communities (green-up and green-down dates, and 
growing season length) into five components using linear 
models: (i) Landscape identity, (ii) Community temporal 
variance, (iii) Community average functioning, (iv) Spe-
cies richness and (v) Community asynchrony. We present 
a schematic view of the nested design of our study (Fig. 1) 
and the partitioning of the variation in plant phenology 
components (Fig. 2). Disentangling between these alter-
native scenarios is critical because they involve different 
management scales and policies. We also provide a direct 
test of the diversity-stability relationship using the spe-
cies richness of individual communities as a measure of 
plant diversity and the coefficient of variation of plant 
phenology as a standard measure of temporal variation.

Results
We successfully established the long-term SAuVER net-
work, for Surveillance Automatisée de la Végétation des 
Écosystèmes Riverains, which monitors the seasonal 
phenology of 118 plant communities across five wet-
land landscapes that differ in their climatic and edaphic 
characteristics. Mean annual temperature in each of 
these landscapes ranged from − 4.6 to 6.4  °C, mean 
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total annual precipitation from 661 to 1085 mm, soil pH 
from 3.5 to 6.4 and soil moisture from 40% to nearly 80% 
(Table 1). Mean green-up dates varied by almost a month 
among landscapes, but mean green-down dates varied by 
no more than 12 days. The growing season length of plant 
communities was on average 33 days longer at lower lati-
tudes (Table 1).

Using a hierarchical partitioning approach, we deter-
mined that Landscape identity was the most influential 
component for green-up dates, emphasizing the influ-
ence of climatic and edaphic factors on leaf-out events 
(Table  2). Community temporal variance (year iden-
tity within landscapes) was the second most influential 
component on green-up dates. However, its influence 
diminished during the season, explaining no more than 
15% of the variation in green-down dates. Community 
average functioning and Community asynchrony within 
landscapes explained the largest share of variation in 
green-down dates. Species richness explained no variation 
in the phenology of plant communities, whereas Com-
munity asynchrony explained more than 20% of green-up 
and green-down dates, highlighting the important role of 

compensatory dynamics in stabilizing the functioning of 
ecosystems (Table 2).

Climatic and edaphic factors, represented by the com-
bination of Landscape identity and Community temporal 
variance, contributed to more than two thirds (69%) of 
the variation in green-up dates. The result was reversed 
when considering the diversity of plant assemblages 
within landscapes, represented by Community average 
functioning and Community asynchrony, which together 
explained 69% of the variation in green-down dates. The 
growing season length of wetland landscapes reflected 
the destabilizing effect of climatic/edaphic factors on 
green-up dates and the stabilizing effect of the diversity 
of plant assemblages on green-down dates (Fig. 3).

Hierarchical partitioning of the variation unveiled the 
weak contribution of plant species richness in explain-
ing the growing season phenology of plant communities. 
Among all possible combinations of years and land-
scapes, we did not find consistent relationships between 
plant species richness and growing season phenology 
(Table  2). Moreover, we did not find any evidence of a 
relationship between the average Species richness of a 

Fig. 1 Nested design of this study and definition of each component. Species richness, Community average functioning, Community temporal 
variance and Community asynchrony are all nested within Landscape identity 
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plant community and the inter-annual temporal insta-
bility of green-up or green-down dates (Fig.  4, lower 
panels). To summarize, neither the phenology nor the 
inter-annual stability of a plant community was deter-
mined by its species richness (Fig. 4).

Discussion
The growing season length of wetlands opposed the 
destabilizing effect of climatic and edaphic factors on 
green-up dates to the stabilizing effect of the diversity 
of plant assemblages on green-down dates. Climatic and 
edaphic factors, expressed through Landscape identity 
and Community temporal variance, explained a larger 

relative proportion of the variation in green-up dates 
across landscapes and years. Conversely, the diversity of 
plant assemblages, expressed through Community aver-
age functioning and Community asynchrony, explained a 
larger relative proportion of the variation in green-down 
dates, thus revealing a seasonal shift in the factors that 
drive the phenology of wetland landscapes. Climatic 
and edaphic factors are destabilizing because they force 
plant communities in a given landscape, in a given year, 
to converge towards a similar phenology. In this context, 
the diversity of plant assemblages is stabilizing because 
it allows plant communities to diverge into a portfolio of 
growth phenology patterns over space and time.

Fig. 2 Contribution of different components to the growing season length of simulated plant communities: a Landscape identity, b Community 
temporal variance, c Community average functioning and d Community asynchrony. In each scenario, lines represent plant communities and colors 
represent different landscapes. Each dot represents the growing season length of a unique community for a given year, whereas each line shows 
its inter-annual trend. Scenarios (a) and (b) are destabilizing because communities respond to the climatic and edaphic factors that characterize 
each landscape each year, which increase variation in the growing season length among landscapes. In contrast, scenarios (c) and (d) are stabilizing 
because the diversity of plant assemblages averages the variation among landscapes. The percent of variation explained by one component is near 
100% in each of the above scenarios
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In theory, species richness could increase the average 
functioning and temporal stability of a plant community 
by increasing species asynchrony and decreasing tempo-
ral variance [27]. Here, we found no influence of species 
richness on the growing season phenology of 118 plant 
communities. Nevertheless, our results show that grow-
ing season length varied by nearly one month between 
plant communities subjected to similar climatic and 
edaphic conditions (i.e., within the same landscape). We 
propose that the diversity of plant assemblages supports 
the growing season phenology and temporal stability of 
wetland landscapes, irrespective of the species richness 
of local communities. A recent study of 78 plant commu-
nities in two wetland landscapes revealed a consistently 
strong negative relationship between the uniqueness 
and species richness of plant communities [28]. Hence, 
unique assemblages of plant species in wetland land-
scapes are often species poor. These unique assemblages 
not only contribute to the diversity of plant assemblages, 
but also may be key to the resilience of wetlands.

Landscape identity and Community temporal variance 
explained most of the variation in green-up dates among 
plant communities of the SAuVER network. Because this 

represents the fraction of variation attributed to climatic 
and edaphic factors, and not the diversity of plant assem-
blages, it is also harder to manage locally. The destabi-
lizing effect of climatic and edaphic factors on green-up 
dates may be related to the large latitudinal gradient 
covered by the SAuVER monitoring network. In high-
latitude landscapes, climatic factors control the activa-
tion of plant metabolism and growth onset [12, 29, 30]. 
In the specific case of wetlands, snowmelt and flooding 
events determine the light available at the ground level 
and temperature profiles, as well as  O2 availability to 
plants [31, 32]. Given that spring temperatures, snowmelt 
dates, flooding amplitude and duration not only vary 
over space, but also from year to year, factors such as spe-
cies composition and richness only have a weak influence 
on green-up dates in comparison to climatic and edaphic 
factors.

Our findings showed that maintaining a diversity of 
plant assemblages dampens spatial and temporal vari-
ations in the growing season length of wetland land-
scapes. Previous studies have underlined the broad range 
of variation in the green-down dates of plant communi-
ties within landscapes [20, 22]. Such variations in plant 

Table 1 Environmental context of the five wetland landscapes

Wetland type (Type), latitudinal location (Latitude; Decimal Degrees), number of surveyed plant communities (Nbr. Comm.), mean annual temperature (Temperature; 
°C), mean total annual precipitation (Precipitation; mm), soil pH (Soil pH; Mean ± Sd), soil moisture (Soil moisture; %, Mean ± Sd), green-up date (Green-up, day of year, 
Mean ± Sd), green-down date (Green-down, day of year, Mean ± Sd), growing season length (GSL; number of days elapsed between Green-up and Green-down dates, 
Mean ± Sd). Mean and Sd values for soil pH and soil moisture were calculated from four measures taken once (August 2015) in each plant community. Mean and Sd 
values for green-up, green-down dates and growing season length were calculated across all communities within each landscape over the period 2013–2016

Scirbi Maskinongé Lac-à-la-tortue Bog-à-lanières Umiujaq

Type Wet meadows Fluvial marshes Peatlands Peatlands Wet meadows

Latitude 46.07 46.19 46.55 47.59 56.57

Nbr. Comm. 20 30 20 20 28

Temperature 6.40 5.10 4.80 2.00 − 4.60

Precipitation 997.2 1009.3 1085.0 1016.4 660.8

Soil pH 5.48 ± 0.26 6.36 ± 0.28 3.47 ± 0.11 4.01 ± 0.11 5.38 ± 0.38

Soil moisture 39 ± 14 55 ± 15 78 ± 11 60 ± 13 58 ± 20

Green-up 160 ± 15 164 ± 8 147 ± 9 157 ± 7 172 ± 7

Green-down 266 ± 11 270 ± 15 263 ± 11 256 ± 8 258 ± 6

GSL 106 ± 15 112 ± 15 117 ± 12 99 ± 11 84 ± 10

Table 2 Hierarchical partitioning of the variation in plant phenology

Plant phenology was explained by: Landscape identity, Species richness, Community temporal variance (year within landscape), Community average functioning 
(community identity within landscape), and Community asynchrony (interaction year x community identity). The values show the coefficient of determination  (R2) 
associated with each phenology component when modelling the green-up date (G-U), the green-down date (G-D) and the growing season length (GSL)

Phenophases Landscape identity Community temporal 
variance

Species richness Community average 
functioning

Community 
asynchrony

G-U 0.42 0.27  < 0.01 0.09 0.22

G-D 0.16 0.15  < 0.01 0.34 0.35

GSL 0.46 0.08  < 0.01 0.29 0.17
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phenology reflect community-specific responses and 
adaptations to a similar set of climatic and edaphic con-
ditions. Said otherwise, the broad range of green-down 
dates observed within a given region is largely driven 

by the ecology of plant communities. Our analyses, 
however, did not disentangle community-specific from 
species-specific responses to climatic and edaphic fac-
tors. A critical question in this context is whether a few 

Fig. 3 Percent relative contribution of the combined effect of Landscape identity and Community temporal variance (grey) and the combined 
effect of Species richness, Community average functioning and Community asynchrony (black) to the green-up and green-down dates, as well as the 
growing season length of 118 plant communities. The relative contribution of Landscape identity and Community temporal variance are summed 
to represent the effect of climatic and edaphic factors on plant phenology, while Species richness, Community average functioning and Community 
asynchrony are summed to represent the effect of plant assemblage diversity on phenology



Page 7 of 11Rheault et al. BMC Ecol Evo           (2021) 21:91  

keystones, but functionally redundant, plant species in 
the landscape drive the green-down phenology of plant 
communities [33]. A better understanding of the pheno-
logical strategy of each individual species will be required 
to tackle this question in greater depth.

Community asynchrony consistently explained 20–40% 
of the variation in the growing season length of plant 
communities, revealing the key role of compensatory 
dynamics in stabilizing wetlands’ functioning. The early 
green-down of some plant assemblages in a given year 
was compensated by the late green-down of other plant 
assemblages, and vice versa in other years. While previ-
ous studies identified species asynchrony as a key prin-
ciple for dampening the functioning of local patches of 
vegetation over time (e.g., [8, 10]), our results suggest 

that community asynchrony may be just as important 
for dampening the functioning of whole landscapes. 
Our findings did not support the hypothesis that local 
species richness stabilizes the functioning of plant com-
munities, which contrasts with the results commonly 
reported from other biodiversity experiments (e.g.: [34, 
35]). Among all possible combinations of years and land-
scapes, we did not find a consistent relationship between 
plant species richness and plant phenology. Neither did 
we find evidences of a stabilizing effect of plant species 
richness on inter-annual fluctuations (i.e., temporal CV) 
in the growing season length of plant communities.

There is a growing body of literature emphasizing the 
importance of conserving a diversity of plant assemblages 
and not only high levels of local plant species richness. 

Fig. 4 Species richness relationships to the Green-up (left) and Green-down (right) phenology of plant communities for every combination of 
year and landscape. Each dot represents the observed day-of-year (DOY) phenology of a unique plant community (top panels), or its temporal 
fluctuation (coefficient of variation; CV) across years (bottom panels). Each color represents a different landscape: Scirbi (Green), Maskinongé (Blue), 
Lac-à-la-Tortue (Purple), Bog-à-lanières (Red), Umiujaq (Orange). In the upper panels, lines of the same color represent different years. In the lower 
panels, none of the relationships between plant species richness and inter-annual CV is statistically noteworthy (p > 0.05,  R2 < 0.01)
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Dampening of ecosystem functioning through commu-
nity asynchrony was so far only hypothesized by theo-
retical models and revealed in experimental grasslands 
[4, 5, 36, 37]. The present study reports and replicates 
this dampening principle on a large network of freely 
assembled plant communities spanning several wetland 
types. We showed that the community asynchrony prin-
ciple operates independently of the climate and edaphic 
factors that prolong, or constrain, the growing season 
of plant communities. For instance, climate warming in 
temperate and boreal landscapes should be associated 
to a longer growing season (e.g.: [38, 39]). Maintaining 
a diversity of plant assemblages may offer this insurance 
mechanism (aka portfolio effect; [3]) to the functioning 
of ecosystems in the face of rapid environmental changes.

Conclusions
We revealed that dampening of temporal variation in the 
growing season of wetlands comes from the diversity of 
plant assemblages and their asynchronous responses, 
and not from maximizing the species richness of each 
individual community. While comparable in duration 
to other diversity-stability experiments (e.g., [40–43]), 
we acknowledge that the observed variation in plant 
phenology is limited to only four years of data. Yet, the 
strength of the SAuVER network stems from monitoring 
contrasted landscapes using standard protocols. Years 
2013–2016 were also not exceptional in terms of climatic 
conditions in the Quebec Province, so we are confident 
that our results will generalize on the long term. Damp-
ening the functioning of ecosystems by maintaining a 
diversity of plant assemblages may be key in the context 
of increasing anthropogenic activities, which may impair 
the ability of wetlands to adapt to fluctuating environ-
mental conditions [44, 45]. Stakeholders should not nec-
essarily consider species-poor plant communities as of 
lower conservation value to the global functioning of eco-
systems. This is particularly true of wetland landscapes, 
where local patches of vegetation are often naturally 
dominated by a few species. A reconsideration of conser-
vation strategies is warranted to prioritize the conserva-
tion of natural wetland dynamics and the environmental 
heterogeneity that together promote the diversification of 
plant assemblages within landscapes.

Methods
Experimental design
Wetlands represent an ideal system for studying the 
dampening effect of plant diversity on ecosystem func-
tioning, as these landscapes show large inter-annual 
variations in their growing season phenology and a 
high species turnover in space and time [22]. In 2013, 
we established a long-term monitoring network, called 

SAuVER, to monitor the taxonomic assemblage and 
growing season length of 118 plant communities across 
five wetland landscapes; e.g.: arctic wet meadows, two 
peatland ecosystems, fluvial marshes and temperate 
wet meadows. Plant communities were monitored from 
2013 to 2016 in the five landscapes spatially distrib-
uted between 46° N and 56° N in Quebec, Canada (See 
Additional file  1: Figure S1). To minimize the effect of 
environmental heterogeneity on the phenology of plant 
communities in each landscape, we selected, within an 
area of less than one square kilometer, 20–30 plant com-
munities composed of herbaceous and low-shrub vegeta-
tion. We locally paired plant communities dominated by 
one or two species with nearby species-rich communities 
to create a species richness gradient that was independ-
ent of local environmental conditions (See Additional 
file 1: Figure S2 and Table S1). Differences in phenology 
among plant communities within landscapes reflected 
differences in their species composition. Plant diversity 
components were defined by both the number of spe-
cies present (i.e.; species richness) and its unique species 
composition (i.e., community identity). Our experiment 
allowed us to evaluate the independent contribution of 
local species richness and community identity on plant 
phenology. By design, the SAuVER network emphasizes a 
gradient in species richness and diversity of plant assem-
blages within each landscape.

We used Wingscape timelapse cameras (Wingscape®, 
Albaster, USA) to monitor changes to the species assem-
blages (richness and identity), and the growing season 
phenology of plant communities. We programmed each 
camera to take three pictures per day (9 a.m., 12 p.m. and 
3p.m.), from April to December at lower latitudes, and 
from June to October at higher latitudes. The size of each 
image was 2592 × 1944 pixels and images were stored in 
JPEG format (RGB images). We left the cameras in the 
field the whole season, except in the fluvial marsh land-
scape where we took pictures on a weekly basis to pre-
vent poaching. In the latter, we mounted the camera on a 
metal post and followed the same procedure used in the 
other landscapes. We positioned the cameras at a height 
of 1.3 m in peatlands and Arctic wet meadows, and 1.5 m 
in fluvial marshes and temperate wet meadows. Each 
camera was pointing downward towards the vegetation 
with an angle of 45 degrees, capturing a ground area of 
approximately 16  m2 [22].

Field measurements
We conducted image-based taxonomic surveys of the 
overstory vegetation in each community through a visual 
assessment of four pictures taken on the 15th day of each 
month in June, July, August and September. We built a 
presence-absence community matrix and counted the 
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total number of species present in the overstory of each 
plant community each year. To guide the identification 
process, we referred to an exhaustive botanical survey 
conducted in each ecosystem on a yearly basis. A pilot 
study of temperate wet meadows showed that the image-
based taxonomic identification of plant species richness 
was highly correlated to field surveys [22]. Species rich-
ness of each community, each year, was determined as 
the mean number of observed species in the four sam-
ples. We used this variable in the variance partitioning 
procedure described below.

Plant phenology
We assessed the growing season length of plant commu-
nities using an automatic R procedure [46, 47]. In each 
image, we calculated a green chromatic coordinate index 
 (GCC) using the following equation:

where R, G and B represented average red, green and 
blue pixels’ digital numbers of each image [48]. We cre-
ated Gcc time series for each community and year by 
assigning the median (50th percentile) of all available 
Gcc values within a non-overlapping moving window 
using the medianFilter function from “FBN” package 
[49, 50]. To extract the Gcc seasonal trend of each com-
munity, we applied a cubic smoothing spline function on 
each filtered time series using the gam function of the 
“mgcv” package [50]. The smoothing parameter used for 
each time series was determined automatically by mini-
mizing the generalized cross-validation score. We then 
implemented the method proposed by White et  al. [51] 
in which green-up and green-down dates are determined 
by applying a threshold to the smoothing function. We 
used 50% of the rescaled greenness range as a threshold 
value. Green-up and green-down dates were found when 
Gcc increased above or decreased below the threshold 
value, respectively ([51], See Additional file 1: Figure S3). 
We defined the growing season length of each plant com-
munity as the number of days elapsed between the green-
up and green-down dates. After removing time series 
that could not be used due to malfunctioning cameras, 
or modification to the field of view by wildlife (mostly 
moose and black bears), we ended up with 306 and 324 
time series for green-up and green-down dates, respec-
tively, and 286 complete time series that could be used to 
assess the growing season length (See Additional file  1: 
Tables S2 and S3).

Statistical analyses
We performed a hierarchical partitioning of the varia-
tion to assess the contribution of Landscape identity and 

(1)Gcc =
G

R+G+ B

Community temporal variance, as well as Species richness, 
Community average functioning, and Community asyn-
chrony on the growing season phenology of plant com-
munities. Specifically, we calculated the proportion of 
the total variance explained by each independent variable 
for each of the three phenology variables (green-up and 
green-down dates, and growing season length) using lin-
ear models and the lm function in R [46]. We introduced 
each independent variable successively to account for the 
hierarchical structure of our data: Landscape identity and 
Species richness, followed by Community temporal vari-
ance, Community average functioning and Community 
asynchrony, with the last three variables nested within 
Landscape identity (see Additional file  1, for an exam-
ple). Landscape identity and Species richness are part of 
the SAuVER experimental design and were fitted first. 
We determined the contribution of Species richness after 
removing the contribution of Landscape identity. We 
modelled Community temporal variance and Community 
average functioning (both nested within Landscape iden-
tity) using year (2013, 2014, 2015, 2016) and community 
identity (1:118), respectively (Fig. 2). Finally, we modelled 
Community asynchrony as the interaction between year 
and community identity, thus capturing the residual vari-
ation associated with the de-correlated temporal dynam-
ics of plant assemblages within landscapes (Fig.  2). We 
included all components as factors (unordered levels), 
with the exception of Species Richness (continuous scale). 
Partitioning of the variation in plant phenology was 
purely additive such that the variance explained by the 
different components always sums to one. Including vari-
ables sequentially in the models may slightly underesti-
mate the contribution of Community average functioning 
and Community asynchrony. However, fitting all terms 
simultaneously did not change the results, which indi-
cated that there is no shared variation between variables.

At last, we directly tested whether plant Species rich-
ness increased the temporal stability (i.e., decreased 
year-to-year fluctuations) of plant phenology at the 
community level. This represents a standard test of the 
diversity-stability relationship at the level of plant com-
munities. We used the coefficient of variation (CV) as a 
measure of instability [52, 53]:

where SD represents the standard deviation of a phe-
nology variable within one community and Mean rep-
resents the arithmetic average across years over the 
2013–2016 period. We used the average number of spe-
cies observed within each unique plant community for 
the period 2013–2016 as our measure of Species rich-
ness for this analysis. We tested for a linear relationship 
between the plant species richness of a community and 

(2)CV = 100× SD
/

Mean



Page 10 of 11Rheault et al. BMC Ecol Evo           (2021) 21:91 

the CV of green-up and green-down dates. We excluded 
the fluvial marsh landscape from this analysis because we 
did not have four years of data for all communities. Lin-
ear models and hierarchical partitioning procedures were 
performed in R 3.4.0 [46].
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