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Abstract 

Background: Color vision and phototactic behavior based on opsins are important for the fitness of insects because 
of their roles in foraging and mate choice. Related topics, including the duplication and loss of opsin genes, have 
been well investigated in insect orders such as Coleoptera, Lepidoptera, Hymenoptera, Odonata and Orthoptera, and 
the findings have been used to develop pest management strategies involving light trapping. Mirid bugs of Hemip-
tera, which are pests that cause heavy economic losses, show capacity for color discrimination and phototaxis. How-
ever, the opsins in mirid bugs remain uncharacterized. Herein, we examined five species to investigate the evolution 
of opsins in the family Miridae.

Results: Using RNA-seq, we identified several contigs showing high identity with opsins, including four contigs in 
Apolygus lucorum and three contigs each in Adelphocoris suturalis, Adelphocoris fasciaticollis, Adelphocoris lineolatus 
and Nesidiocoris tenuis. Phylogenetic analyses indicated that one of these genes clustered with ultraviolet-sensitive 
(UV) opsins and that the others clustered with long-wavelength (LW) opsins, suggesting that duplication of LW opsins 
and loss of blue light-sensitive (B) opsins occurred in mirid bugs. The existence of introns in the LW opsins of mirid 
bugs suggested that the duplication events were DNA based. Both LW1 and LW2 opsins of mirid bugs were found to 
be under strong purifying selection. The LW1 opsins were significantly more highly expressed than the LW2 and UV 
opsins.

Conclusions: We identified the opsins of mirid bugs using five selected mirid species as a representative sample. 
Phylogenetic analyses clustered one of the genes with UV opsins and the others with LW opsins, suggesting the 
occurrence of LW opsin duplication and B opsin loss during the evolution of mirid bugs. Intron detection suggested 
that the identified duplication event was DNA based. The evidence of strong purifying selection and the relatively 
high expression levels suggested that these opsins exhibit fundamental functions in mirid bugs.
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Background
The family Miridae (Hemiptera: Heteroptera), mem-
bers of which are also known as “plant bugs”, is one of 
the most diverse families of insects, including approxi-
mately 11,020 species in more than 1200 genera [1, 2]. 
The compound eyes of these insects are usually large, 
and ocelli are absent, except in species from the subfam-
ily Isometopinae [1, 2]. According to their feeding habits 
and host ranges, mirid bugs are divided into two main 
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groups: phytozoophages (herbivores that complement 
their diets with prey; some species are important agricul-
tural pests, such as Apolygus lucorum and Adelphocoris 
suturalis) and zoophytophages (predators that occasion-
ally feed on plant resources and are considered natural 
enemies useful for pest management, such as Nesidioco-
ris tenuis and Macrolophus pygmaeus) [2–5]. Recently, 
several mirid bugs (e.g., Ap. lucorum, Ad. suturalis) have 
attracted much attention because they feed on more than 
100 plant species and cause significant economic losses 
[4–7]. Given their color vision and positively phototactic 
behavior, color and light traps are used to monitor and 
manage these nocturnal pests [8–10]. A previous study 
has revealed that adults of Ap. lucorum are significantly 
more attracted by green (515–518 nm) LEDs than by red 
(587–590 nm) and yellow (615–618 nm) LEDs [10]. Con-
sistent with this finding, separate studies have indicated 
that green traps are most attractive to Ap. lucorum [11, 
12]. Opsins play central roles in the color vision and pho-
totaxis of insects [13–15]. However, the details of opsin 
evolution in mirid bugs remains unclear.

Opsins are G-protein-coupled receptors character-
ized by seven transmembrane-domain structures, which 
determine the spectral sensitivity of the photopigment, 
and a light-sensitive vitamin A-derived chromophore 
that is characterized by a lysine residue in the seventh 
helix [16]. Physiological and molecular phylogenetic anal-
yses have revealed that ancient insects possessed trichro-
matic vision involving three subfamilies of visual opsins: 
long-wavelength-sensitive (LW) opsins (> 500  nm), blue 
light-sensitive (B) opsins (400–500  nm) and ultraviolet-
sensitive (UV) opsins (325–400 nm) [13, 17]. Color vision 
based on opsin photoreceptor molecules plays an impor-
tant role in survival-related behaviors of insects (e.g., for-
aging, mating choice) [18–20], and insects have evolved 
diverse types of color vision via duplication and loss of 
opsin genes. For example, Drosophila has evolved a 
fourth subfamily composed of blue-green-sensitive (BG) 
opsins (approximately 480 nm) [13, 17, 21, 22], dragon-
flies have undergone duplication of opsins [23, 24], and 
beetles have lost B opsins [25–27]. Based on studies of 
opsin molecular evolution, trichromatic vision is consid-
ered an ancestral trait determined by opsin loss or gain 
in insects [13, 17]. In addition to color vision, opsins play 
important roles in the phototactic behavior of insects 
that are used worldwide for integrated pest manage-
ment [14, 15]. Over the last several decades, the opsins 
of insects have been well studied in Lepidoptera, Coleop-
tera, Hymenoptera, Odonata and Orthoptera [23, 24, 
26–31]. For example, related studies have revealed that 
duplication and mutation of opsin genes have expanded 
spectral diversity in lepidopteran insects to increase their 
capacity for color vision [32, 33], and coleopteran insects 

have been used as models for investigation into how tri-
chromacy can be achieved in the absence of B opsins 
[25–27]. However, no opsins have been reported in true 
bugs (Hemiptera: Heteroptera).

To better understand the molecular evolution of opsins 
in mirid bugs, we performed transcriptomic analyses 
on the opsin genes of five species from the two groups, 
including four phytozoophagous species (Ap. lucorum, 
Ad. suturalis, Ad. fasciaticollis and Ad. lineolatus [6, 
34, 35]) and one zoophytophagous species (N. tenuis [2, 
3]). We identified four opsin-like contigs in Ap. lucorum 
and three in each of the other mirid bug species. Subse-
quent phylogenetic analyses suggested that duplication of 
LW opsins and loss of B opsins have occurred in mirid 
bugs. After gene duplication, genes tend to be subject 
to different levels of selection pressure, measured as the 
ratio between synonymous and nonsynonymous substi-
tutions (dn/ds). The duplication event was found to be 
DNA based, and both LW1 and LW2 were found to be 
under strong purifying selection. These results account 
for the high expression levels of opsins and suggest the 
evolutionary mechanism of opsins in mirid bugs: func-
tional LW opsins were obtained via DNA-based duplica-
tion, and B opsins were lost. These results could help us 
to develop novel management strategies for controlling 
mirid bugs by enhancing understanding of opsin-based 
color vision and phototaxis.

Results
Identification of opsin genes in five species of mirid bugs 
through transcriptome analyses
We obtained 4.8 gigabases (Gb) of clean data for Ap. 
lucorum. An overview of the sequencing and assembly 
data is provided. The RNA-seq data were submitted to 
the Sequence Read Archive (SRA) database (accession 
number: SRR6371236). Functional annotation of 22,771 
unigenes (31.99%) was performed using the BLAST NR 
database with an E-value cutoff of 1e−5. Using the result-
ing data and RNA-seq data we obtained previously [35], 
we identified visual opsins in the five species of mirid 
bugs (Additional file 1: Table S1). According to these ref-
erence sequences, we designed primers and sequenced 
these contigs again via Sanger sequencing (Additional 
file 1: Table S2).

Sequence alignment and phylogenetic analyses
Phylogenetic analyses based on translated amino acid 
sequences (Additional file  2) showed that all opsin 
genes formed four well-supported clades correspond-
ing to four opsin types (Fig. 1). The LW opsins of mirid 
bugs were divided into two clades and showed a sister 
group relationship (Fig.  1), supporting a paralogous 
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relationship between the two LW types in mirid bugs. 
LW opsin duplication likely occurred two times in Ap. 
lucorum and one time in the other four mirid bug spe-
cies (Fig. 2b). In addition, the B opsins were likely lost 
in mirid bugs (Fig.  2a). Ancestral state reconstruction 
indicated that BG opsins are likely specific to Drosoph-
ila, which is classified within Diptera (Figs.  1, 2a). To 
determine the duplication mode of LW opsins in mirid 
bugs, we investigated the genomic structures of the 
LW opsins and found that all the LW opsins contained 
introns; however, different numbers of introns were 
observed in the N. tenuis (five introns in NtLW1 and 
six introns in NtLW2) and Ap. lucorum (four introns 
in AlLW1-1 and AlLW102 and three introns in AlLW2, 
but AlLW2 had an incomplete ORF) genes (Fig.  3, 

Additional file 3), excluding the possibility that duplica-
tion events occurred via retrogenes.

Natural selection analyses
The CodeML branch model significantly rejected the 
neutral evolutionary hypothesis for the whole phylogeny 
of mirid opsins (likelihood ratio test [LRT] = 10,336.59, 
p < 0.001, Table  1). The multiple ratio model was more 
favored than the one-ratio model (LRT = 10,341.18, 
p < 0.001). The branch-specific ω values were 0.064, 0.059 
and 0.050 for LW1, LW2 and other opsins, respectively. 
The ω value of LW1 was higher than that of LW2. Given 
this situation, we specifically tested whether natural 
selection acts on LW1 and/or LW2. However, both the 
CodeML (p > 0.05 for both LW1 and LW2) and BUSTED 
methods failed to detect a signature of positive selection, 
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although the BUSTED analysis of LW1 provided a rela-
tively small p value (0.099). Relaxation of selection pres-
sures was also not detected with RELAX (p > 0.05). These 
results suggested that both LW1 and LW2 opsins of mirid 
bugs were under purifying selection.

Expression analyses
The fragments per kilobase of exon per million frag-
ments mapped (FPKM) method was used to determine 

the relative expression levels of the opsins in mirid 
bugs. LW1 opsins were significantly more highly 
expressed than LW2 and UV opsins in N. tenuis 
(df = 2, F = 48.984, P = 0.0001922) and Ad. suturalis 
(df = 2, F = 38.375, P = 0.0003812) (Fig.  4). However, 
there was no difference in expression levels between 
LW2 and UV opsins. The results were similar in Ap. 
lucorum, Ad. fasciaticollis and Ad. lineolatus, although 
there were no replicates (Additional file 4).
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Discussion
The evolution of color vision in animals, with opsins 
as a reference, has been well investigated in recent 
decades [25–27, 33, 36–38]. Through RNA-seq and 
phylogenetic analyses, we found that the LW and UV 
opsins of mirid bugs clustered with the opsins of other 
insects; however, no mirid opsins clustered with the B 
opsins, suggesting that B opsins have been lost in mirid 
bugs, similar to the situation in coleopteran insects 
[25–27]. Moreover, more than one contig clustered 
with the LW opsins of other insects, suggesting that LW 

opsin duplication occurred in mirid bugs (twice in Ap. 
lucorum).

Gene duplication is a common process in the evolu-
tionary adaptation of organisms to the environment [39, 
40]. There are two possible duplication modes, which 
are classified according to the sources of the duplicated 
genes: (1) DNA-based duplication, in which genomic 
DNA is used as a template and which can be detected 
according to the presence of regulated elements or 
introns [41–44]; and (2) RNA-based duplication, in 
which mRNA is used as a template (referred to as ret-
rotransposition) and which can be detected on the basis 
of a lack of introns [45, 46]. Opsins, especially LW and 
UV opsins, have been duplicated in species from dif-
ferent insect orders, such as Coleoptera, Lepidoptera, 
Hymenoptera, Odonata and Orthoptera [23, 24, 26–31]. 
Both DNA- and RNA-derived duplications of LW opsins 
have occurred in lepidopteran insects [30, 31]. We did 
not detect duplication of UV opsins in mirid bugs, so 
we chose one phytozoophagous species (Ap. lucorum) 
and one zoophytophagous species (N. tenuis) to deter-
mine the duplication mode of LW opsins in mirid bugs. 
The results indicated that all of the LW opsins contained 
introns, suggesting that duplication events occurred with 
genomic DNA as a template. In lepidopteran insects, 
opsins usually contain seven introns that correspond to 
the seven transmembrane domains in the amino acid 
sequences of the opsins [30, 31]. However, the number 
of introns can differ within or between species of mirid 
bugs. For example, there are five introns in LW1 and six 
introns in LW2 in N. tenuis; in contrast, there are four 
introns in LW1-1/LW1-2 and three introns in LW2 in Ap. 
lucorum, although these genes have incomplete coding 

Table 1 Selective patterns for LW opsins

a Number of parameters
b Natural logarithm of the likelihood value
c Twice the log-likelihood difference between the two models

Model npa Ln  Lb Estimates of ω Models compared LRTc P values

Branch models

I: one ratio 118 − 44,881.38 ω = 0.053

J: one ratio ω = 1 117 − 50,049.67 ω = 1 J vs. I 10,336.59 0

K: the LW1 lineage, LW2 lineage and the 
other branches have different dn/ds 
ratios

120 − 44,879.08 ω1 = 0.064, ω2 = 0.059, ω0 = 0.050 I vs. K 10,341.18 0

M: each branch has its own ω 233 − 44,569.90 Variable ω by branch I vs. M 622.96 0

Branch-site models

N: LW1 lineage has ω = 1 120 − 44,755.26

O: LW1 lineage 121 − 44,755.26 N vs. O 0 1

P: LW2 lineage has ω = 1 120 − 44,772.03

Q: LW2 lineage 121 − 44,772.03 P vs. Q 0 1
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Fig. 4 Expression levels of opsins in Apolygus lucorum and 
Nesidiocoris tenuis. The gene names are provided under the x-axis. 
The log-transformed FPKM values are displayed and were used for 
statistical analyses
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domains, suggesting that LW opsins in insects have dif-
ferent evolutionary modes. Herein, we used only adults 
to perform RNA-seq; thus, we may have missed some 
opsins with very low expression levels or stage-specific 
expression.

The evolutionary pattern of opsins in Arthropoda 
suggests that the functions of LW and UV opsins are 
fundamentally conserved [47]. Selection analyses have 
supported this possibility, indicating the occurrence of 
purifying or positive selection [24, 27, 29, 36, 48]. How-
ever, loss of B opsins has occurred in various insects, such 
as some species of Hemiptera and Coleoptera, suggesting 
that these opsins exhibit a different function and selec-
tion mode [25, 27]. Coleopterans include diurnal insects, 
negatively phototactic insects, and positively phototactic 
insects. These findings suggest that the loss of B opsins 
might not be related to the ambient light environment 
or to color vision. Interestingly, evidence regarding the 
physiology and evolution of opsin genes suggests that the 
function of B opsins is partially compensated for by LW 
and UV opsins in Coleoptera [25–27]. The LW genes of 
beetles have experienced strong purifying selection [26, 
27], and strong purifying selection signals were detect-
able in the two LW opsins of the five investigated mirid 
bugs in our study, suggesting that these two genes pos-
sess a conserved function that is similar to those of the 
genes in other species. In noctuid moths, LW2 originated 
from retrotransposition and is under more relaxed puri-
fying selection than LW1 [30]. However, LW2 in mirid 
bugs, which originated from DNA-based duplication 
events, is under selection pressure similar to that of LW1, 
suggesting that LW2 exhibits a more important biological 
function in mirid bugs than in noctuid moths.

Both variation and expression analyses have been used 
to investigate the evolution and functions of opsins [15, 
49–52]. We further investigated the expression level of 
opsins in mirid bugs using the FPKM values obtained 
from RNA-seq. Retrogenes are typically presumed to be 
randomly inserted into the genome and to become pseu-
dogenes due to the lack of a native promoter (except in 
cases in which a new promoter is acquired) [44, 46, 53]. 
However, duplicated genes based on DNA are expressed 
normally but at different levels based on the diversity of 
the regulatory apparatus (e.g., promoter) [54]. Interest-
ingly, compared to UV opsins, LW2, which originated 
from retrotransposition, is expressed at very low lev-
els (e.g., it is undetectable at the adult stage) in noctuid 
species [30]. However, both LW1 and LW2 are highly 
expressed in mirid bugs, although the expression levels 
of LW1 are significantly higher than those of LW2 and 
UV opsins, suggesting that LW2 plays a more important 
role in mirid bugs than in noctuid species. Adults of Ap. 
lucorum are significantly more attracted by green traps 

and green LEDs (515–518 nm) than by traps and LEDs of 
other colors, possibly because of the elevated expression 
levels of LW opsins in Ap. lucorum [10–12]. Moreover, 
mirid bugs usually show green-based body coloration, 
and the plants upon which they feed are also green, 
suggesting that the duplication of LW opsins might be 
related to mating choice and feeding in these insects. 
Further analysis of opsin evolution and expression levels 
could help us to develop novel management strategies 
exploiting the color vision and phototactic behavior of 
pests.

Conclusions
We identified the opsins of five mirid bugs using RNA-
seq. Phylogenetic analyses indicated the existence of UV 
opsins in all the mirid bugs as well as three LW opsins in 
Ap. lucorum and two LW opsins in the other four mirid 
bugs, suggesting that LW opsins were duplicated and that 
B opsins were lost during evolution. The duplicates of 
LW contained introns, implying that the duplication was 
DNA based. The strong purifying selection and relatively 
high expression levels suggested that the opsins in mirid 
bugs exhibit fundamental functions. Our results fill gaps 
in the body of knowledge regarding opsin evolution in 
insects.

Methods
Transcriptome analyses
Ap. lucorum adults were collected from a cotton field at 
the Langfang Experimental Station of the Chinese Acad-
emy of Agricultural Sciences (Hebei Province, China) 
in 2015 and were used for RNA-seq as described previ-
ously [55]. Briefly, total RNA was extracted from the 
whole bodies of fifty adults with TRIzol reagent (Invitro-
gen, Carlsbad, CA, USA), and mRNA was isolated using 
oligo(dT) magnetic beads. Then, the mRNA was bro-
ken into short fragments and used to synthesize cDNA 
with a SuperScript double-stranded cDNA synthesis kit 
(Invitrogen, Carlsbad, CA, USA). The short fragments 
(approximately 200  bp) were purified with a QIAquick 
PCR Purification Kit (Qiagen, Germany) and used to 
construct a cDNA library. Sequencing was performed via 
paired-end sequencing using an Illumina HiSeq™ instru-
ment. De novo assembly was performed using Trinity 
(v2.0.6) [56]. Read mapping was performed with Bowtie 2 
(https:// sourc eforge. net/ proje cts/ bowtie- bio/ files/ bowti 
e2). For functional annotation, the assembled contigs 
were aligned to the NR, STRING, SwissProt and KEGG 
databases with BLASTx (e-value ≤ 1E−5). For quantita-
tive analyses, the read counts were calculated and then 
normalized to the FPKM values by using RSEM (v1.1.17) 
software [57, 58]. Statistical analyses of the gene expres-
sion levels were conducted using one-way ANOVA in R.

https://sourceforge.net/projects/bowtie-bio/files/bowtie2
https://sourceforge.net/projects/bowtie-bio/files/bowtie2
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Identification of opsin genes
Previously, we performed RNA-seq on Ad. suturalis, 
Ad. fasciaticollis, Ad. lineolatus and N. tenuis samples, 
and the data were submitted to the National Center 
for Biotechnology Information (NCBI), the SRA data-
base (accession numbers: SRR6322944, SRR6322963, 
SRR6322964, SRR8259912, SRR8259810, SRR8259282, 
and SRR6322965) [35]. In the current study, we function-
ally annotated the visual opsins of these five mirid bugs. 
To understand the duplication modes of LW opsins in 
mirid bugs, we designed primers according to the refer-
ence sequences obtained from RNA-seq that amplified 
the opsin genes in template DNA from N. tenuis and Ap. 
lucorum in order to determine the genomic structures of 
the opsins (Additional file 1: Table S2). The PCR program 
was as follows: 30 s at 94 °C, 30 s at 55 °C, and 2 min at 
72 °C for 40 cycles.

Sequence alignment and phylogenetic/evolutionary 
analyses
We performed phylogenetic reconstruction, including 
additional opsins from other insect species. We used 
opsins from the genome of Daphnia pulex (the common 
water flea) as an outgroup. Fifty-seven opsin sequences 
were included in our analyses. Sequence alignment was 
performed using the codon model as implemented in 
PRANK [59]. Given the highly divergent patterns of these 
opsins, we used trimAl [60] to select blocks of conserved 
regions in the alignment for evolutionary inference. Phy-
logenetic analyses were performed using the maximum 
likelihood (ML) method in RAxML 7.3.2 [61] under the 
GTRGAMMA substitution model [62] for DNA and the 
PROTGAMMAJTTF model for proteins with 1000 and 
100 replicates, respectively. Ancestral character states 
(gain or loss) of B and BG opsins and the associated 
uncertainty were estimated based on the phylogenetic 
relationships of insect orders using the ape package in R 
[63, 64].

Selection assessment
We used the ML approach [65] to test differences in 
selection pressure between the two feeding habits using 
the CodeML program implemented in the PAML 4.5 
package [66]. Specifically, we tested whether specific 
branch models and branch-site models could detect posi-
tive selection acting on particular lineages. Four hypoth-
eses were evaluated: (1) that there is one dn/ds ratio for 
all branches (one-ratio model; assumes that all branches 
have evolved at the same rate); (2) that the dn/ds ratio = 1 
for all branches (neutral model; neutral evolution for all 
branches); (3) that the LW1 lineage, the LW2 lineage and 
the other branches exhibit different dn/ds ratios (ω1, ω2 

and ω0; three-ratio model; allows the foreground branch 
to evolve under a different rate); and (4) that each branch 
exhibits its own dn/ds ratio. For the branch-site models, 
the LW1 and LW2 lineages were defined as foreground 
branches, and the remaining lineages were defined as 
background branches, as specified in the tree file using 
branch labels. The LRT was employed to determine 
whether the alternative model, indicating positive selec-
tion, was superior to the null model. The recently devel-
oped RELAX method [67], implemented in the program 
HYPHY [68], was employed to detect whether relaxation 
of selection pressure occurred at the LW1 and/or LW2 
opsins of mirid bugs. In addition, we used the BUSTED 
method [69] to test whether a gene had experienced posi-
tive selection acting on at least one site among the LW1 
and/or LW2 opsins of mirid bugs.
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