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Nectar-dwelling microbes of common tansy 
are attractive to its mosquito pollinator, Culex 
pipiens L.
D. A. H. Peach1,2* , C. Carroll1, S. Meraj1, S. Gomes1, E. Galloway1, A. Balcita1,3, H. Coatsworth1,4, N. Young1, 
Y. Uriel1, R. Gries1, C. Lowenberger1, M. Moore1 and G. Gries1

Abstract 

Background: There is widespread interkingdom signalling between insects and microbes. For example, microbes 
found in floral nectar may modify its nutritional composition and produce odorants that alter the floral odor bouquet 
which may attract insect pollinators. Mosquitoes consume nectar and can pollinate flowers. We identified microbes 
isolated from nectar of common tansy, Tanacetum vulgare, elucidated the microbial odorants, and tested their ability 
to attract the common house mosquito, Culex pipiens.

Results: We collected 19 microbial isolates from T. vulgare nectar, representing at least 12 different taxa which we 
identified with 16S or 26S rDNA sequencing as well as by biochemical and physiological tests. Three microorgan-
isms (Lachancea thermotolerans, Micrococcus lactis, Micrococcus luteus) were grown on culture medium and tested in 
bioassays. Only the yeast L. thermotolerans grown on nectar, malt extract agar, or in synthetic nectar broth significantly 
attracted Cx. pipiens females. The odorant profile produced by L. thermotolerans varied with the nutritional composi-
tion of the culture medium. All three microbes grown separately, but presented concurrently, attracted fewer Cx. 
pipiens females than L. thermotolerans by itself.

Conclusions: Floral nectar of T. vulgare contains various microbes whose odorants contribute to the odor profile of 
inflorescences. In addition, L. thermotolerans produced odorants that attract Cx. pipiens females. As the odor profile of 
L. thermotolerans varied with the composition of the culture medium, we hypothesize that microbe odorants inform 
nectar-foraging mosquitoes about the availability of certain macro-nutrients which, in turn, affect foraging decisions 
by mosquitoes.
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Background
Chemical signalling between microbes and insects is 
widespread and occurs in a variety of contexts [1–3]. 
Plant odorants as well as visual displays of inflorescences 
play essential roles in attracting insect pollinators [4]. 

Floral nectar provides nutrition and habitat for myriad 
microorganisms [5–10] that may ultimately alter the 
composition of nectar [11] and produce odorants [8, 
12, 13], thereby modifying the inflorescence odor bou-
quet [13–15]. These microbially-derived odorants may 
contribute to the plant-pollinator signalling system by 
serving as attractive semiochemicals (message-bearing 
chemicals) to pollinators [13, 16–18]. However, this type 
of signalling may be species-specific with respect to both 
the sender and the receiver of these semiochemicals 
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because in other instances, microbe-derived odorants 
cause no behavioral response [19], or avoidance by pol-
linators [19, 20]. Furthermore, the overall odor bouquet 
produced by microbes varies with the composition of the 
microbe community [2, 21], likely modifying the insects’ 
behavioural responses.

Plant-derived nutrients (e.g., sugars) are fundamental 
dietary constituents for adult mosquitoes [22], provid-
ing energy for flight, mating, blood-feeding, egg-laying, 
and female overwintering [22–25]. Floral nectar is the 
dominant source of plant sugar for most mosquitoes but 
other sugar sources such as extra-floral nectar, aphid 
honeydew, and fruit juices are also consumed [22, 26]. 
Inflorescence semiochemicals [27] along with visual 
inflorescence displays [28] and  CO2 [29] attract mosqui-
toes to various inflorescences [22, 29–31] that they dis-
tinguish by scent [32, 33] and may pollinate [34–37].

Microbe-derived odorants have not yet been impli-
cated in mosquito nectar-foraging but are exploited by 
mosquitoes in a variety of other contexts. For example, 
the odor bouquet of microbe-inoculated or infested 
aphid honeydew is more attractive to the yellow fever 
mosquito, Aedes aegypti, than the odor bouquet of steri-
lized honeydew [38]. The volatile semiochemicals emit-
ted by human skin microbes help attract host-seeking 

mosquitoes [39–41]. Carbon dioxide is another impor-
tant vertebrate- and plant-host cue for mosquitoes [29, 
42], which originates not only from potential hosts but 
also from their symbiotic microbes [43]. Moreover, 
microbe-derived semiochemicals indicate suitable ovipo-
sition sites for many mosquito species and attract gravid 
females [44–46]. Microbe-derived semiochemicals and 
 CO2 may also play a role in mosquito attraction to floral 
nectar.

Common tansies, Tanacetum vulgare, are visited by 
many insect taxa [37, 47], including mosquitoes [37, 48] 
that respond to floral semiochemicals [29] and serve as 
pollinators [37]. Therefore, T. vulgare is a good model 
plant to investigate the role of nectar-dwelling microbes 
in the attraction of mosquitoes to floral nectar. Working 
with T. vulgare, and one of its mosquito pollinators, the 
common house mosquito, Culex pipiens [37], we tested 
the hypotheses (H) that: (1) nectar-colonizing microbes 
emit semiochemicals attractive to Cx. pipiens; (2) the 
attractiveness of these microbes is dependent upon their 
nutrient source; and (3) multiple species of nectar-colo-
nizing microbes attract more mosquitoes than a single 
species.

Table 1 (i) List of  microbes identified from  Tanacetum vulgare nectar including  information about  the  plant, 
inflorescence, and  individual florets from  which they were collected, (ii) the  medium used to  culture microbes, and  iii 
the methods used for microbe identification

LB Luria–Bertani, YEPD yeast extract peptone dextrose, ID  identification, PCR polymerase chain reaction, test  traditional biochemical and physiological tests

Source

Isolate Plate Media Name of Microbe Plant # Inflorescence # Floret # ID Method Accession #

LB-T1D1 LB Mix of Bacillus amyloliquefaciens
& B. subtilis

1 1 1 PCR + test MW539056
MW538945

LB-T1E1 LB Pseudarthrobacter sp. 1 2 1 PCR MW539063

LB-T1E2 LB Micrococcus lactis 1 2 2 PCR + test MW539682

LB-T2C1 LB Pseudomonas sp. 2 1 1 PCR MW555319

LB-T2E1 LB Staphylococcus epidermidis 2 1 1 PCR MW540426

LB-T3A1 LB Cryptococcus sp. 3 1 1 PCR MW555579

LB-T3B2 LB Bacillus sp. 3 2 1 PCR MW540653

LB-T4A2 LB Rhodotorula/Ustilentyloma sp. 4 1 1 PCR MW540505

LB-T4B1 LB Bacillus circulans 4 2 1 PCR + test MW540503

LB-T4B2 LB Bacillus sp. 4 2 2 PCR MW540792

LB-T4C1 LB Micrococcus luteus 4 3 1 PCR + test MW540513

LB-T4D1 LB Bacillus sp. 4 3 1 PCR MW540520

YPD-T1B1 YEPD Lachancea thermotolerans 1 3 1 PCR MW540525

YPD-T1E1 YEPD Micrococcus sp. 1 2 1 PCR MW555329

YPD-T2E1 YEPD Lachancea thermotolerans 2 2 2 PCR + test MW540529

YPD-T3A1 YEPD Micrococcus sp. 3 1 1 PCR MW555327

YPD-T3B2 YEPD Bacillus sp. 3 2 1 PCR MW540532

YPD-T4C1 YEPD Bacillus sp. 4 3 1 PCR MW540612
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Results
Identification of nectar‑colonizing microbes
We collected nectar from nectaries of T. vulgare florets 
with a sterile glass microcapillary tube and identified 19 
microbial isolates (Table 1) by sequencing the 16S or 26S 
rDNA genes, and by comparing the results to data in the 
National Center for Biotechnology Information GenBank 
using BLASTn (Bethesda, USA; http://www.ncbu.nlm.
nih.gov/BLAST .cgi). We performed additional biochemi-
cal and physiological tests on select isolates to aid in their 
identification (Table  2). Sampling a total of 40 florets 
from 20 inflorescences (2 florets per inflorescence) from 
4 plants (5 inflorescences per plant), we found the yeast 
L. thermotolerans in nectar from two separate florets 
on two separate plants. Bacillus spp. were present in six 
florets from three separate plants, and Micrococcus spp. 
were present in four florets from three separate plants. In 
five floret samples, more than one microbe was present.
H1: Nectar-colonizing microbes emit odorants attrac-

tive to Cx pipiens

In two-choice laboratory experiments with a paired-
trap design, we tested attraction of female Cx. pipiens to 
a synthetic nectar broth (10% w/v sucrose, 2% w/v yeast 
extract) (control stimulus) and the same broth inoculated 
with (i) L. thermotolerans (Exp. 1), (ii) M. luteus (Exp. 
2), or (iii) M. lactis (Exp. 3). We captured more female 
Cx. pipiens when L. thermotolerans was the inoculum 
(z = 4.03, p < 0.0001; Fig. 1, Exp. 1) but not when either M. 
luteus or M. lactis was the inoculum (M. luteus: z = 1.44, 
p = 0.15; M. lactis: z = − 1.02, p = 0.31; Fig. 1, Exps. 2, 3), 
indicating an ability of the mosquitoes to discern among 
different microbes or their metabolites.

Dose of microbes tested
We grew L. thermotolerans, M. luteus and M. lactis in 
the synthetic nectar broth for 48  h and these reached 
final mean concentrations of 3.85 × 107 cells/mL (N = 2), 
1.13 × 105 cells/mL (N = 2), and 2.85 × 106 cells/mL 
(N = 2), respectively.
H2: The attractiveness of microbes is dependent upon 

their growth medium

Table 2 Biochemical tests for  the  identification of  microbes collected from  the  inflorescences of  common tansy, 
Tanacetum vulgare 

Test YPD‑T2E1 LB‑T1D1‑a (round) LB‑T1D1‑b 
(filamentous)

LB‑T4B1 LB‑T1E2 LB‑T4C1

Fermentation of:

Sucrose  +  +  +  + Not tested Not tested

Starch  +  +  +  + Not tested Not tested

L-alanine – – – – Not tested Not tested

Glucose  +  +  +  + Not tested Not tested

Mannitol –  +  +  + Not tested Not tested

Xylose – – – – Not tested Not tested

Galactose  + – –  + Not tested Not tested

Lactose –  +  + Varies Not tested Not tested

Fructose  +  +  +  + Not tested Not tested

Enzyme production:

Catalase test  +  +  +  + Not tested Not tested

Oxidase test Not tested – – Varies Not tested Not tested

Other tests: Not tested Not tested

7% NaCl development Not tested  +  + – – Not tested

10% NaCl development Not tested  +  + – Not tested Not tested

Nitrate reduction Not tested Not tested Not tested Not tested  +  + 

Hydrolysis of casein Not tested Not tested Not tested Not tested  + Not tested

Hydrolysis of tween80 Not tested Not tested Not tested Not tested Not tested –

Assimilation of L-arabinose Not tested Not tested Not tested Not tested – Not tested

Assimilation of D-glucose Not tested Not tested Not tested Not tested – Not tested

10 °C development Not tested Not tested Not tested Not tested  + –

42 °C development Not tested Not tested Not tested Not tested – Not tested

50 °C development Not tested –  + – Not tested Not tested

KOH string test Not relevant Gram + Gram + Gram + Not tested Not tested

http://www.ncbu.nlm.nih.gov/BLAST.cgi
http://www.ncbu.nlm.nih.gov/BLAST.cgi
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To determine whether the attractiveness of L. ther-
motolerans is affected by its nutrient source, single 
colonies of L. thermotolerans were spread-plated onto 

synthetic nectar agar, malt extract agar or YEPD agar 
plates. In two-choice laboratory experiments, we then 
tested attraction of Cx. pipiens to paired traps baited with 
either one of the three types of inoculated agar (each with 
40–60% microbial growth coverage) or an uninoculated 
control agar. Lachancea thermotolerans growing on syn-
thetic nectar agar (Exp. 4) or malt extract agar (Exp. 5) 
attracted more female Cx. pipiens than corresponding 
agar controls but not when growing on YEPD agar (Exp. 
6) (Exp. 4: z = 2.29, p = 0.02; Exp. 5: z = 2.47, p = 0.013; 
Exp. 6: z = -0.61, p = 0.54; Fig. 2). Thus, attraction of Cx. 

pipiens females to L. thermotolerans is contingent upon 
the nutrients available to this yeast.
H3: Multiple species of nectar-colonizing microbes 

attract more mosquitoes than single microbe species
We hypothesized that odorants from different 

microbes may have additive or synergistic effects on 
attraction of Cx. pipiens females; therefore, we investi-
gated whether M. lactis, M. luteus and L. thermotolerans 
presented together are more attractive than each microbe 
on its own. We inoculated synthetic nectar in separate 
petri dishes with single colonies of M. lactis, M. luteus or 
L. thermotolerans, and in laboratory experiments tested 
attraction of female Cx. pipiens to paired traps baited 
with each species alone or in ternary combination. Sur-
prisingly, the ternary combination was as attractive as M. 
lactis alone (z = −  1.08, p = 0.28; Fig.  3, Exp. 7) and M. 
luteus alone (z = − 0.33, p = 0.74; Fig. 3, Exp. 8), and even 
less attractive than L. thermotolerans alone (z = 1.96, 
p = 0.05; Fig.  3, Exp. 9). Hence, the attractiveness of L. 
thermotolerans was actually reduced when it was pre-
sented alongside the two bacterial species.

Identification of microbe‑derived volatiles
We used dynamic headspace aerations to capture the 
odorants emitted from L. thermotolerans and identified 
them by gas chromatography-mass spectrometry (GC–
MS). In response to the nutrients provided by the three 
types of media, L. thermotolerans produced different 
odor blends (Fig. 4). The yeast grown on all three media 
generated 2-phenylethanol, and dimethyl trisulfide was 
detected in two media types. All microbe-produced com-
pounds differed from those originating from the media 
themselves (Table 3).

CO2 production from synthetic nectar
Over the course of 150  h, L. thermotolerans growing in 
synthetic nectar broth sealed with a 98% sulfuric acid 
vapour lock produced 343 mg of  CO2 (Fig. 5).

Discussion
Our data show that diverse microbes including the yeast 
Lachancea thermotolerans colonize floral nectar of tansy. 
Lachancea thermotolerans growing on synthetic nec-
tar or malt extract media produce odorants that attract 
female Culex pipiens. Furthermore, we show that L. ther-
motolerans grown in a synthetic nectar broth produces 
 CO2 and that L. thermotolerans alone is more attractive 
to female Cx. pipiens than when presented along with 
two bacteria also isolated from the same inflorescences. 
Below we elaborate on our conclusions.

Our culture-based approach to isolate nectar-coloniz-
ing microbes from common tansy likely under-represents 

 50 Exp. 2
(n = 11)

*

M. luteus

L. thermotoleransExp. 3
(n = 12) 64
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(150)(126)

(138)(78)

 38 (130)(147)Exp. 1
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Fig. 1 Mean proportion of Culex pipiens females captured in paired 
traps baited with a synthetic nectar broth inoculated, or not (control; 
light grey bars), with Micrococcus lactis (Exp. 1), Micrococcus luteus 
(Exp. 2), or Lachancea thermotolerans (Exp. 3). Numbers in white boxes 
represent the mean percentage of non-responding mosquitoes, 
and numbers within parentheses the total number of mosquitoes 
captured. The asterisk (*) in Exp. 3 indicates a significant preference 
for the treatment stimulus (binary logistic regression with a logit link 
function, P < 0.05)

 18 Exp. 5
(n = 8)

*

YEPD Agar

Malt AgarExp. 6
(n = 12) 45

0.5 0.25 0.25 0.5 0.750
Mean (+SE) proportion of mosquitoes captured

(159)(170)

(187)(142)

63 (119)(86) Nectar AgarExp. 4
(n = 11) *

Fig. 2 Mean proportion of Culex pipiens females captured in paired 
traps baited with one of three types of media inoculated, or not 
(control; light grey bars), with Lachancea thermotolerans. Numbers 
in white boxes represent the mean percentage of non-responding 
mosquitoes, and numbers within the parentheses the total number 
of mosquitoes captured. The asterisk (*) in Exp. 4 and Exp. 6 indicates 
a significant preference for the treatment stimulus (binary logistic 
regression with a logit link function, P < 0.05)
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the microbial diversity present in nectaries [49]; never-
theless, our collection of 19 isolates representing at least 
12 species of microbes compares favourably with results 
of other studies examining microbial diversity in floral 
nectar using culture methods [6–8]. We isolated Staphy-
lococcus epidermidis which may have been a contaminant 
because this microbe is typically associated with human 
skin. However, other microbes, such as Candida albicans 
[50] (not isolated in our study) which are thought to be 
obligate commensals of animals, have also been isolated 
from the environment [51]. Although culture-independ-
ent methods such as metagenomic analysis can be used 
to examine microbial diversity without the selection pres-
sures of culturing, only by obtaining live cultures of the 
colonizing microbes could we study the odor profiles of 
these isolates and test their ability to attract Cx. pipiens.

Microbe-derived semiochemicals have been shown 
to guide foraging behavior of mosquitoes in a variety 
of contexts. Semiochemicals emitted from human skin 
microbiota, including S. epidermidis, Corynebacterium 
minutissimum and Brevibacterium epidermidis, attract 
mosquitoes to human hosts [39, 41, 52, 53]. Moreover, 
semiochemicals from Psychrobacter immobilis, Sphingo-
bacterium multivorum, Bacillus spp., Pseudomonas spp., 
Klebsiella spp., and others help mosquitoes locate suit-
able oviposition sites [44, 46]. Finally, semiochemicals 
emitted from microbes colonizing aphid honeydew [38], 
or present in floral nectar [this study], attract sugar-for-
aging mosquitoes.

Microbes could also inform mosquitoes about the 
prospect of obtaining a sugar meal. The odor profiles 
of inflorescences differ not only between plant spe-
cies [54] but also within the same species due, in part, 
to microbe-specific odorants [17]. These odorants may 

enable mosquitoes to discern inflorescences with sugar-
rich and sugar-poor rewards, analogous to mosquitoes 
selecting human hosts based, in part, on their skin micro-
biota [40, 41]. Emission of microbe-semiochemicals from 
nectaries could inform mosquitoes about the presence 
of nectar-dwelling microbes which, in turn, would signal 
sugar or amino acid metabolism and thus the availability 
of sugar or amino acids. Alternatively, microbe odorants 
could indicate microbe presence stemming from a previ-
ous insect floral visit that may have temporarily depleted 
the sugar resource. Mosquitoes themselves are capable of 
microbe phoresis, as shown with floral nectar surrogates 
[55], as are many other insects visiting inflorescences or 
obtaining floral nectar [56, 57].

The informative value of microbe-derived odorants 
to foraging mosquitoes became evident when we grew 
L. thermotolerans in/on different nutrient sources. The 
nutrients available to L. thermotolerans not only affected 
the odorants it produced (Fig. 4) but also their attractive-
ness to foraging mosquitoes. This implies that the pres-
ence and composition of specific microbial odorants 
could inform mosquitoes about the availability of par-
ticular nutrients such as carbohydrates and amino acids. 
Lachancea thermotolerans grown in synthetic nectar 
broth produced appreciable amounts of  CO2 which—
while only weakly attractive on its own [42]—syner-
gistically enhances the attractiveness of floral and host 
semiochemicals to both nectar- and host-foraging mos-
quitoes [38, 42].

Lachancea thermotolerans and its odor bouquet, 
respectively, also attract several species of North Ameri-
can yellowjackets (Hymenoptera: Vespidae) [58, 59] and 
the green lacewing, Chrysoperla comanche (Stephens) 
[60]. When grown and aerated on grape juice agar, L. 

 34 Exp. 8
(n = 5)

*
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L. thermotoleransExp. 9
(n = 5) 26

0.5 0.25 0.25 0.5 0.750
 Mean (+SE) proportion of mosquitoes captured
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(n = 5 M. lactisAll 3 Microbes

All 3 Microbes

All 3 Microbes

Fig. 3 Mean proportion of Culex pipiens females captured in paired traps baited with one or three vessels containing synthetic nectar broth, each 
inoculated with one of three microbes: Micrococcus lactis, M. luteus and Lachancea thermotolerans. Numbers in white boxes represent the mean 
percentage of non-responding mosquitoes, and numbers within parentheses the total number of mosquitoes captured. The asterisk (*) in Exp. 9 
indicates a significant preference for the L. thermotolerans test stimulus (binary logistic regression with a logit link function, P < 0.05)
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thermotolerans produced 20 odorants which, when field-
tested as a synthetic blend, attracted Western yellow-
jackets, Vespula pensylvanica [58]. Two of the odorants 
in this blend, 2-phentylethanol and 2-acetylfuran, were 
also found in this study. Lachancea thermotolerans is fre-
quently isolated from fruit or fruit-related resources [61, 
62] and is used in wine fermentations to generate ethanol 
and lactic acid [63].

Most studies investigating relationships between nec-
tar-dwelling microbes and floral visitation by insects 
have focussed on hymenopterans (but see [64]), yet dip-
terans are also frequent visitors and important pollina-
tors of flowers [65–68], and they interact with microbes 
[3, 69]. Our results suggest microbe-mediated, or at least 

modulated, inflorescence visitation by mosquitoes. This 
concept has been suggested for some hymenopteran 
pollinators including the European honey bee, Apis mel-
lifera [13], and several species of bumble bees, Bombus 
spp. [17, 18], that preferentially visit inflorescences with 
nectar-dwelling yeasts, primarily Metschnikowia reukau-
fii. Conversely, both honey bees and bumble bees avoid 
inflorescences with certain nectar-dwelling bacteria [19, 
20]. The combined information indicates that microbes 
can alter the floral scent [15], thereby prompting attrac-
tion or avoidance of specific floral visitors.

In follow-up studies, the sample size, while ade-
quate, could be increased and the complete visitation 
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Fig. 4 Headspace odorants from plates of YEPD agar (a), malt extract agar (b), and synthetic nectar agar plates (c) that were inoculated with 
Lachancea thermotolerans and that were not present in the headspace of uninoculated control plates. Compounds produced by L. thermotolerans 
were 3-methyl-butanol (1); 2-methyl-butanol (2); unknown (3); dimethyl trisulfide (4); 2-phenylethanol (5); 2-acetyl furan (6); indole (7); geranyl 
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history of plants could be tracked, thereby revealing 
the insect vectors of any microbe inoculum. Moreover, 
to determine the amount of inoculum and the result-
ing odor intensity needed to attract mosquitoes, a 
dose–response experiment could be run with one test 
stimulus reflecting the odor intensity of a representa-
tive tansy inflorescence. We tested 10  ml of synthetic 
nectar in our laboratory bioassays. This took into 
account that (i) each common tansy possesses multiple 
inflorescences, (ii) each inflorescence comprises dozens 
of composite flowers, and (iii) each composite flower 
contains up to 300 florets, each of which can produce 
up to ~ 1 µL of nectar (D. P. Pers. Obs.). Therefore, the 
volume of synthetic nectar we bioassayed approximates 

the volume of nectar produced by a common tansy or 
a group of common tansies. Similarly, the amount of 
synthetic nectar odorants we assayed resembled that 
of odorants produced by nectar-dwelling microbes and 
which would be encountered by foraging mosquitoes in 
field settings.

Conclusion
We demonstrate that floral nectar of common tansies 
contains various microbes, and we identified 19 to genus 
level or further. Of the three species tested in behavio-
ral bioassays, only the yeast L. thermotolerans had a sig-
nificant effect on the attraction of female Cx. pipiens, 
which was diminished, rather than improved, by admix-
ture with two bacterial species. The attractiveness of L. 
thermotolerans to Cx. pipiens females was dependent 
upon its nutrient source and linked to a distinct odor-
ant profile, although a causal relationship was not tested. 
We propose that specific components of the odor blend 
signal the availability of certain macro-nutrients such 
as sugar and amino acids which, in turn, inform forag-
ing decisions by mosquitoes. It would now be interesting 
to determine the key odorant(s) in the microbe odorant 
blend that mediate(s) the attraction of mosquitoes.

Methods
Microbe collection
We collected 40 T. vulgare florets, from 20 inflorescences 
(2 florets per inflorescence), from 4 plants (5 inflores-
cences per plant) during September, 2017, in Delta, BC 
(Canada), wearing latex gloves (VWR International, Rad-
nor, USA) and a surgical mask (Acklands Ltd., Wawa, 
Canada). All plants were collected within a 3-m2 patch 
of tansy beside a secondary road in a rural farming area. 
Immediately prior to sample collections, DP observed 
an adult female mosquito (likely Aedes dorsalis) visiting 
this tansy patch. We immediately placed inflorescences 
into sterile Ziploc bags (S.C. Johnson, Racine, USA) and 
stored them on ice for transport to the lab. Using ethanol 
and flame-sterilized scissors, we removed the tops of flo-
rets and inserted an autoclaved glass micro-capillary, pre-
pared with a micropipette puller (Model P-1000, Sutter 
Instrument Co., Novato, USA), into the nectary to draw 
nectar via capillary action. Each draw yielded a maximum 
of ~ 1 µL of nectar. We repeated this twice on the same 
composite flower, using only one composite flower per 
inflorescence. We then inserted, and subsequently shat-
tered, the micro-capillary into a sterile microcentrifuge 
tube (1.5  mL; ThermoFisher Scientific Inc., Waltham, 
USA) containing autoclaved distilled water (400 μL). 
We pipetted a 100-μL aliquot of this solution onto yeast 
extract peptone dextrose agar (YEPD) plates (20 g/L bac-
teriological peptone, 10 g/L yeast extract, 20 g/L glucose, 

Table 3 Headspace odorants of  YEPD agar, malt 
extract agar and  synthetic nectar agar, each inoculated 
with  Lachancea thermotolerans. Compounds in  bold font 
were found in two or more samples

a All compounds were absent from the headspace of corresponding 
uninoculated control agar

Medium Compoundsa

YEPD agar 2-Methyl-1-butanol

3-Methyl-1-butanol

2‑Phenylethanol
Dimethyl trisulfide

Malt extract agar 2-Acetylfuran

2‑Phenylethanol
Indole

Geranyl acetone

Synthetic nectar agar Hexanoic acid

Dimethyl trisulfide
Benzyl alcohol

2‑Phenylethanol

Fig. 5 Weight loss over time of synthetic nectar broth (25 mL) 
inoculated with Lachancea thermotolerans due to fermentation and 
 CO2 emission by L. thermotolerans 
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15 g/L agar) (Sigma Aldrich, St. Louis, USA) and Luria–
Bertani agar (LB) plates (10  g/L tryptone, 5  g/L yeast 
extract, 5  g/L NaCl, 15  g/L agar) (Sigma Aldrich, St. 
Louis, USA), spread it with a sterile glass rod, and then 
incubated plates for 48–72 h at 30  °C. We subsequently 
re-streaked morphologically distinct colonies onto new 
plates to obtain pure colonies. Working cultures were 
maintained at 4 °C. Storage cultures of each isolate were 
prepared with 20% glycerol and stored at − 80 °C.

Microbe identification
Cells from a single colony were picked and grown in liq-
uid YEPD or LB media for 24 h at 30 °C, and DNA was 
extracted according to Rose et  al. 1990 [70]. DNA con-
centrations were estimated using a NanoDrop UV/Vis 
2000 spectrophotometer (ThermoFisher Scientific Inc., 
Waltham, USA). To identify bacteria, we used Taq DNA 
polymerase (Applied Biological Materials, Richmond, 
Canada) to amplify the V3-V4 loop of the 16S rDNA 
gene with the Universal Forward Primer (UniF)—5′-CCT 
ACG GGRBGCASCAG-3′ and the Universal Reverse 
Primer (UniR)—5′-GGA CTA CNNGGG TAT CTAAT-
3′ [71], and to amplify the 26S rDNA gene of yeast, we 
used the NL1 primer—5′-GCA TAT CAA TAA GCG GAG 
GAA AAG -3′—and NL4 primer—5′-GGT CCG TGT TTC 
AAG ACG G-3′ [72]. The identity of the colony found to 
be L. thermotolerans was confirmed using the specific 
primers INT2F (5′-TGG TTT TAT TGA AGC CAA AGG-
3′) and INT2R (5′-GGG GAC CCG GAG ATT AAT AG-3′) 
[73]. PCR amplicons were pooled and concentrated 
using the NucleoSpin Gel and PCR Clean-up kit (Mach-
ery-Nagel, Duren, Germany). We sequenced amplicons 
(Genewiz, South Plainfield, USA) and used the Basic 
Local Alignment Search Tool (BLAST) [74] to compare 
the sequenced region of individual isolates with known 
sequences. A species or genus was determined to be a 
match if there was at least 95% coverage and 99% identity 
using BLAST with the sequenced isolate. In addition, we 
ran biochemical and physiological tests on select isolates 
(see Table 1) and Gram-tested bacterial colonies on select 
plates using KOH (Table 2). Biochemical tests were car-
ried out according to established procedures [75, 76]. We 
determined the ability of isolates to grow at 7% NaCl and 
10% NaCl in liquid media, and we tested isolate growth at 
various temperatures. For unknown Bacillus and Epider-
midis isolates, catalase and oxidase enzyme production 
tests as well as sucrose, starch, L-alanine, glucose, man-
nitol, galactose, lactose, and fructose fermentation tests 
were run. For Micrococcus isolates, nitrate reduction, 
hydrolysis, and assimilation tests were run. We identified 
test isolates by comparing biochemical test results with 
data from the bioMérieux api® 50 CHB/E test kit (bio-
Mérieux SA, Lyon, France) and reference papers [77–81].

Rearing of experimental mosquitoes
We reared Cx. pipiens at 23–26  °C, 40–60% RH, and a 
photoperiod of 14L:10D. We kept mixed groups of males 
and females in mesh cages (30 × 30 × 46  cm high) and 
provisioned them with a 10-% sucrose solution ad  libi-
tum. The primary author (DP) blood-fed females once 
per week. For oviposition, gravid females were given 
access to water in circular glass dishes (10  cm diame-
ter × 5 cm high). We transferred eggs to water-filled trays 
(45 × 25 × 7 cm high) and sustained larvae with NutriFin 
Basix tropical fish food (Rolf C. Hagen Inc., Baie-D’Urfe, 
Canada). We transferred pupae via a 7-mL plastic pipette 
(VWR International, Radnor, USA) to water-containing 
354-mL Solo cups covered with a mesh lid. Using an aspi-
rator, we collected emergent adults and placed them in 
similar cups, along with a cotton ball soaked in a 10-% 
sucrose solution.

Behavioural bioassays
We ran all behavioral bioassays in mesh cages 
(77 × 78 × 104  cm) which were wrapped in black fab-
ric except for the top, thereby allowing ambient fluores-
cent light illumination. During bioassays, we kept cages 
at 23–26 °C, 40–60% RH and a photoperiod of 14L:10D. 
For each 24-h bioassay, we released 50 virgin Cx. pipi-
ens females, 1- to 3-day-old, 24-h sugar-deprived into a 
cage fitted with adhesive-coated (The Tanglefoot Comp., 
Grand Rapids, USA) paired delta traps (9  cm × 15  cm) 
on burette stands spaced 30 cm apart. For each bioassay 
which ran for about 24 h, treatment and control stimuli 
were randomly assigned to these traps. At the end of 
each bioassay the number of mosquitoes in each trap was 
counted.

Growth conditions for nectar‑derived microorganisms
We grew microbes on YEPD agar plates, malt extract 
agar plates (3% w/v malt extract, 0.2% w/v peptone, 1.5% 
w/v agar), and synthetic nectar agar or nectar broth (10% 
w/v sucrose, 2% w/v yeast extract). All agar plates were 
92-mm diam Petri dishes (Sarstedt Inc., Nümbrecht, 
Germany). The synthetic nectar broth was prepared in 
an autoclaved 2-L Erlenmeyer flask. After streaking sin-
gle colonies onto plates or inoculating broth, we incu-
bated cultures for approximately 48–72  h at 23–26  °C 
and 40–60% RH. We used plates with microbial growth 
covering 40–60% of the surface area for behavioural 
bioassays.

Attractiveness of microbes in synthetic nectar
In two-choice laboratory experiments with a paired-
trap design, we tested attraction of female Cx. pipiens 
to microbe-derived odorants. We pipetted 10 mL of the 
treatment stimulus [synthetic nectar broth inoculated 
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with L. thermotolerans, M. lactis or M. luteus and incu-
bated as described above] into a sterile 92-mm diam Petri 
dish which we placed into a randomly assigned delta 
trap. The paired control stimulus consisted of a sterile 
synthetic nectar broth (10 mL) presented the same way. 
We bioassayed the response of female Cx. pipiens as 
described above in “behavioural bioassays”.

Attractiveness of L. thermotolerans growing on different 
media
In two-choice laboratory experiments with a paired-trap 
design, we tested attraction of female Cx. pipiens to L. 
thermotolerans with 40–60% surface area coverage cul-
tured on YEPD agar, malt extract agar, or synthetic nec-
tar agar prepared as described above. In each bioassay, 
the corresponding uninoculated agar media served as the 
paired control stimulus.

Comparative attractiveness of single‑ vs multiple‑species 
of microbes
In two-choice laboratory experiments with paired traps, 
we compared attraction of female Cx. pipiens to L. ther-
motolerans, M. lactis, and M. luteus presented singly or 
in ternary combination in the same trap. We cultured 
each microbe separately in synthetic nectar broth as 
described above, and pipetted 3.3 mL of each broth into 
a separate sterile 35-mm Petri dish (Sarstedt Inc., Nüm-
brecht, Germany). As a result, paired traps were baited 
with either one or three Petri dishes in each bioassay, the 
design of which is as described in the “Behavioural bioas-
say” section.

Dose of microbes tested
We determined the concentration of microbes used in 
experiments by performing serial dilutions of microbe-
inoculated synthetic nectar broth after incubation at 
25  °C for 48  h. Cell density was determined using a 
hemacytometer.

Measurement of  CO2 production by L. thermotolerans
We inoculated sterile synthetic nectar broth (25  mL) 
with a single colony-forming unit of L. thermotolerans 
previously grown on YEPD agar, and then incubated the 
broth at 30  °C for 5  days. We added an aliquot (10 μL) 
of this broth to 100 mL of sterile synthetic nectar broth 
in a 250-mL Erlenmeyer flask, attached a vapour lock 
(5 mL of 98% sulfuric acid) to maintain vapour pressure 
and prevent water loss, and obtained the starting weight. 
We incubated the entire assembly in a water bath kept at 
30  °C in the fume hood and monitored weight loss as a 
proxy for  CO2 emission [82].

Dynamic headspace odorant collections
We placed 12 plates with L. thermotolerans grown for 
48–72  h at 23–26  °C on YEPD, malt agar, or SN media 
into a Pyrex® glass chamber (34 cm high × 12.5 cm wide). 
A mechanical pump drew charcoal-filtered air at a flow of 
1 L  min−1 for 24–72 h through the chamber and through 
a glass column (6  mm outer diameter × 150  mm) con-
taining 200 mg of Porapak-Q™ adsorbent. We desorbed 
odorants captured on Porapak with 0.5 mL each of pen-
tane and ether. We analyzed 2-µl aliquots of Porapak-
Q™ extract by gas chromatography-mass spectrometry 
(GC–MS), operating a Saturn 2000 Ion Trap GC–MS fit-
ted with a DB-5 GC–MS column (30  m × 0.25  mm i.d.; 
Agilent Technologies Inc., Santa Clara, USA) in full-scan 
electron impact mode. To chromatograph the odorants 
of L. thermotolerans on malt extract agar and on syn-
thetic nectar agar, we used a flow of helium (35 cm s−1) as 
the carrier gas with the following temperature program: 
50  °C (5 min), 10  °C min−1 to 280  °C (held for 10 min). 
The temperature of the injector port was 250 °C and the 
ion trap was set to 200 °C. To analyze the odorants of L. 
thermotolerans on YEPD agar, and to reveal very vola-
tile compounds that may have eluded detection using 
the above temperature program, we retained the same 
helium flow (35 cm s−1) but lowered the initial tempera-
ture, running the following temperature program: 40  °C 
(5 min), 10 °C min−1 to 280 °C (held for 10 min). Aliquots 
of headspace odorant extracts were injected in split mode 
with a 1:1 split ratio, and the temperature of the injec-
tor port and the ion trap were set to 250 °C and 200 °C, 
respectively. We identified odorants in headspace odor-
ant extracts by comparing their retention indices (RI; 
relative to n-alkane standards) [83] and their mass spec-
tra with those reported in the literature and with those of 
authentic standards.

Statistical analyses
We used SAS software version 9.4 (SAS Institute Inc., 
Cary, USA) to analyze data, excluding from analyses all 
experimental replicates with no mosquitoes captured in 
traps. We used a binary logistic regression model with 
a logit link function to compare mean proportions of 
responders between test stimuli, and used back-trans-
formed data to attain means and confidence intervals.
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