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Abstract 

Background: Life history theory predicts that during the lifespan of an organism, resources are allocated to either 
growth, somatic maintenance or reproduction. Resource allocation trade-offs determine the evolution and ecology of 
different life history strategies and define an organisms’ position along a fast–slow continuum in interspecific compar-
isons. Labord’s chameleon (Furcifer labordi) from the seasonal dry forests of Madagascar is the tetrapod species with 
the shortest reported lifespan (4–9 months). Previous investigations revealed that their lifespan is to some degree 
dependent on environmental factors, such as the amount of rainfall and the length of the vegetation period. How-
ever, the intrinsic mechanisms shaping such a fast life history remain unknown. Environmental stressors are known 
to increase the secretion of glucocorticoids in other vertebrates, which, in turn, can shorten telomeres via oxidative 
stress. To investigate to what extent age-related changes in these molecular and cellular mechanisms contribute to 
the relatively short lifetime of F. labordi, we assessed the effects of stressors indirectly via leukocyte profiles (H/L ratio) 
and quantified relative telomere length from blood samples in a wild population in Kirindy Forest. We compared 
our findings with the sympatric, but longer-lived sister species F. cf. nicosiai, which exhibit the same annual timing of 
reproductive events, and with wild-caught F. labordi that were singly housed under ambient conditions.

Results: We found that H/L ratios were consistently higher in wild F. labordi compared to F. cf. nicosiai. Moreover, F. 
labordi already exhibited relatively short telomeres during the mating season when they were 3–4 months old, and 
telomeres further shortened during their post-reproductive lives. At the beginning of their active season, telomere 
length was relatively longer in F. cf. nicosiai, but undergoing rapid shortening towards the southern winter, when both 
species gradually die off. Captive F. labordi showed comparatively longer lifespans and lower H/L ratios than their wild 
counterparts.

Conclusion: We suggest that environmental stress and the corresponding accelerated telomere attrition have pro-
found effects on the lifespan of F. labordi in the wild, and identify physiological mechanisms potentially driving their 
relatively early senescence and mortality.
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Background
Life history theory is based on the premise that dur-
ing the lifetime of an individual, energy and resources 
are allocated to either growth, somatic maintenance, or 
reproduction [1–3]. For example, resources, which are 
invested into fast growth and early reproduction, cannot 
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be used for somatic maintenance, which may lead to 
shorter lifespans. The trade-offs between traits shape life 
history strategies and the distribution of species along 
a fast–slow continuum of life history speeds [4–6]. In 
spite of the supposed significance of extrinsic factors in 
shaping life histories, aging research is still largely biased 
towards captive animals living under standardized, opti-
mal conditions (e.g., [7]). In the wild, studies of senes-
cence have largely focused on long-lived animals that face 
relatively low levels of extrinsic mortality (e.g. sea turtles 
[8], birds [9], Soay sheep [10]). However, studies focusing 
on age-related changes in short-lived species in the wild 
are rare. Hence, studies of wild populations with high 
extrinsic mortality are essential for testing hypotheses on 
the evolution of lifespan and senescence.

Oxidative stress and its damage to macromolecules is 
one of the most cited causes of aging [11]. The oxidative 
damage is a byproduct of aerobic respiration [12] and 
intensified by chronic stress conditions characterized 
by a persistent release of glucocorticoids (GCs) in verte-
brates [13]. Physiological stress is an important media-
tor in the trade-off between survival and reproduction 
[14, 15]. GCs are released in response to a wide range of 
stressful stimuli (e.g., [16]), and several of their effects 
parallel those observed during aging, suggesting that 
chronic stress has a potential to accelerate the aging pro-
cess [17, 18].

The immunosuppressive effects of chronic GC eleva-
tion and their consequences for morbidity and mortal-
ity have been studied intensively [19, 20]. Alterations in 
key immunological parameters during chronic stress 
parallel those during normal immunosenescence to a 
large degree [21]. These hormones are important regu-
lators of carbohydrate, lipid, and protein metabolism 
[22], and several earlier studies linked poor body condi-
tion to elevated GC concentrations (e.g., [23]). The direct 
measurement of baseline GC levels in wildlife via blood 
plasma can be challenging as stress hormones can rise 
immediately following capture [24]. However, leukocyte 
profiles are a suitable tool to indirectly assess stress lev-
els as these hormones increase the number of heterophils 
and decrease the number of lymphocytes. Leukocyte 
responses to stress take about 12  h to several days in 
ectotherms (reviewed in [25]). Heterophils are the pri-
mary phagocytic leukocyte, which proliferate in circula-
tion in response to infections, inflammation and stress 
[26–30]. Lymphocytes are involved in a variety of immu-
nological functions such as the production of immuno-
globulin and modulation of immune defense [31].

At the cellular level, telomere length (TL) and short-
ening are thought to be significant proximate con-
tributors to the aging process. Telomeres are short, 
tandem-repeated sequences of DNA found at the ends of 

linear eukaryotic chromosomes, whose sequence (TTA 
GGG ) is highly conserved among vertebrates [32]. Tel-
omeres function in stabilizing chromosomal end integ-
rity [33], inhibiting aberrant fusions and rearrangements 
that occur on broken chromosomes [34], and aiding 
in the completion of duplication [35]. During each cell 
cycle, telomeric repeats are lost because DNA polymer-
ase is unable to completely replicate the 3′end of linear 
DNA [35].

There is great variation among species in age-specific 
TL [36]. Sexual differences in TL and attrition have been 
suggested to contribute to sex-specific disease and mor-
tality patterns in humans [37, 38], where women typi-
cally have longer telomeres and are longer-lived (e.g., 
[39]). Telomerase, the enzyme that countervails telomere 
shortening was found to be active in stem cells, gametes 
and most cancer cells, but normally absent from or at 
very low levels in most somatic cells [40]. However, some 
studies in reptiles suggested that telomerase may not be 
turned off in adult somatic cells [41]. Besides cell division 
dependent telomere shortening, elevated levels of corti-
costerone can further affect TL via increased oxidative 
damage by reactive oxygen species (ROS) [42, 43]. Ele-
vated GCs, particularly during long-term physiological or 
psychological stress, have been linked to increased oxi-
dative stress and concomitant telomere shortening and 
reduced telomerase activity [43, 44]. As the nucleobase 
guanine is a major oxidation target for ROS, the (TTA 
GGG ) repeats are particularly exposed to oxidative dam-
age [45].

Telomeres may also act as sentinels of the general level 
of DNA damage in a given cell. High levels of telomere 
damage would be indicative of high levels of damage 
to the coding sequences. Thus, telomeres could offer a 
mechanism to ensure that cells with high levels of DNA 
damage soon terminate division [46]. Overall, demanding 
life history stages and harsh environmental conditions 
seem to be linked to a rapid rate of telomere degradation, 
and there is also a clear connection between physiologi-
cal stress and telomere attrition in humans, laboratory 
rodents and wild vertebrates [44, 47–50]. This evidence 
suggests that telomere dynamics could be closely related 
to stress in wild vertebrates (reviewed in [51]), and Hou-
ben et al. [52] emphasized that telomeres are a promising 
biomarker for chronic oxidative stress.

Labord’s chameleon (Furcifer labordi) from the sea-
sonal deciduous dry forests in western and southwestern 
Madagascar has a lifespan of only 4–9  months [53, 54]. 
This extreme life history makes this species an interesting 
model for studying potential mechanisms of accelerated 
senescence, especially because longer-lived sympatric 
congeners are available for comparative studies. During 
their short lives, these chameleons hatch at the beginning 
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of the wet season in November, passing through subse-
quent fast juvenile growth, maturation and courtship, 
followed by the death of both sexes during the early dry 
season in May [53, 54]. Wild females tend to live slightly 
longer, whereas no sex difference in lifespan was found 
in caged individuals kept under ambient conditions [54]. 
Fast growth rates, high reproductive rates and intense 
mating competition might proximately contribute to 
increased stress levels and telomere shortening, which in 
turn may facilitate the decrease of physiological function-
ing, ultimately leading to death (e.g., [55, 56]).

To investigate whether the ratio of heterophils and 
lymphocytes (H/L ratio) and telomere shortening are 
associated with the early die-off in F. labordi in the 
wild, we determined their telomere dynamics as well as 
their leukocyte profiles as an indict measure of physi-
ological stress. Our study included two comparisons; one 
between wild F. labordi and their sympatric and longer-
lived congener F. cf. nicosiai, and one with F. labordi kept 
in single cages under ambient conditions, shielding them 
substantially from environmental stressors, like hunger 
or predation risk. We predicted an increase in H/L ratios 
as well as rapidly shortening telomeres in post-reproduc-
tive wild F. labordi as well as lower H/L ratios and decel-
erated telomere attrition in F. cf. nicosiai. Furthermore, 
as age-related changes should be delayed in the longer-
lived females of both species, we predicted females to 
exhibit comparatively slower rate of senescence than 
males. Finally, caged F. labordi, which were shielded from 
extrinsic mortality and from a substantial part of the 
costs of reproduction and starvation, were expected to 
exhibit slower correlates of aging compared to their wild 
conspecifics.

Results
In both species, heterophils were the most abundant 
leukocyte type, followed by lymphocytes azurophils and 
basophils. Heterophiles exhibited a spherical shape with 
an eccentric mostly lobed nucleus containing clumpy 
basophilic purplish chromatin. Most lymphocytes con-
tained a large nucleus with coarse chromatin, leaving only 
a small visible band of cytoplasma around it. Basophils 
were only found sporadically. On average, the H/L ratio 
of F. labordi (2.45 ± 0.97 SD, n = 319) was significantly 
higher compared to that of F. cf. nicosiai (1.51 ± 0.47 SD, 
n = 103, t = −  9.921, p < 0.001). Moreover, we detected 
an increase of the H/L ratio in both species between 
February and May (Fig. 1, Table 1), reflecting the cessa-
tion of mating activities. In captive specimen, we found 
an average H/L profile of (1.42 ± 0.14 SD, n = 40) and no 
significant sex differences (Table 2). As in their wild con-
specifics, the H/L ratio of captive chameleons increased 
significantly from February until June (Table 2).

During our sampling period, we did not detect any sig-
nificant sex and age-related changes in TL in F. labordi. 
Average TL was significantly longer in F. cf. nicosiai 
(t = 6.438, p < 0.001). Furthermore, TL of F. cf. nicosiai 
was comparatively long in March (1.87 ± 0.77 SD, n = 14) 
and decreased dramatically until May (1.14 ± 0.33 SD, 
n = 10, t = − 2.686, p < 0.01). Moreover, TL of F. cf. nico-
siai males was significantly shorter compared to females 
(t = −  2.67, p < 0.01, df = 38). For statistical analyses 
(Table 3), the months June and July were excluded due to 
small sample sizes (but June is included in Fig. 2), and we 
found a negative correlation between the H/L ratio and 
TL in F. labordi ( r= − 0.556, df = 65, p < 0.01) and in F. cf. 
nicosiai ( r = − 0.687, df = 38, p < 0.01 ; see Fig. 3).

Discussion
Our study revealed that H/L ratios were consistently 
higher in wild F. labordi compared to F. cf. nicosiai, hint-
ing at higher stress levels in the shorter-lived species. 
Furcifer labordi already exhibited relatively short telom-
eres when they were 3–4  months old. TL was initially 
comparatively longer in F. cf. nicosiai, but undergoing 
rapid shortening after the mating season. In this species, 
we also detected intersexual differences in H/L ratio and 
TL, with shorter living males exhibiting higher H/L ratios 
and shorter telomeres. Interestingly, heterophils were 
the most common leucocyte type in both wild and cap-
tive chameleons. Captive F. labordi exhibited compara-
tively longer lifespans and lower H/L profiles than their 

Fig. 1 H/L ratio of adult wild F. labordi (n = 319) and F. cf. nicosiai 
(n = 103). Boxplots depict H/L ratio per species and sex from February 
until May, covering the period between mating and death
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wild conspecifics. In planning this study, we assumed 
that the captive chameleons would be buffered from 
some environmental stressors, like starvation, desicca-
tion and predation risk. Our data therefore indicate that 
relatively long-lived wild F. labordi individuals were, on 
average, more stressed and lived shorter lives than their 
captive conspecifics, indicating a link between stress and 
longevity.

Baseline stress levels and leukocyte profiles
Investigations in other reptile species indicated large 
differences between hematology values of different spe-
cies as well as intraspecific variation as a function of 

season and sex [57, 58]. In their study of blood chem-
istry and hematology in captive panther chameleons 
(Furcifer pardalis), Laube et  al. [59] found that lym-
phocytes were the predominant leukocyte type in both 
summer and winter. In contrast, Cuadrado et  al. [60] 
reported that heterophils were the most frequently 
found leucocyte type in dystoic and healthy post-repro-
ductive females of the common chameleon (Chamaeleo 
chamaeleon). The H/L ratio from that study (2.24) 
resembled the values reported here for F. labordi (2.45). 
More recently, Eshar et  al. [61] found that heterophils 
were the most abundant leukocytes type in wild com-
mon chameleons. As part of their study of leukocyte 

Table 1 Parameters of the linear model examining the influence of time, sex and species on H/L ratio

Bold indicates the significant values

Fixed effects Estimate SE t-value P F df P

(Intercept) 1.974 0.095 20.766  < 0.001 25.64 400  < 0.001
March 0.325 0.105 3.093  < 0.01
April 0.374 0.119 3.140  < 0.01
May 0.735 0.139 5.366  < 0.001
Sex: male 0.356 0.087 4.102  < 0.001
Species:
F. cf. nicosiai

− 1.022 0.103 − 9.921  < 0.001

Table 2 Parameters of  the  linear mixed model examining the  influence of  sex and  time on  H/L ratio in  semi-captive F. 
labordi 

Bold indicates the significant values

Fixed effects Estimate SE df t-value P χ2 df P

(Intercept) 1.185647 0.056175 163.3084 21.10641  < 0.001 33.75 5  < 0.001
sex: male -0.00934 0.041367 33.16293 -0.22582 0.822

March 0.222828 0.075443 239.0659 2.95359  < 0.01
April 0.192228 0.079707 238.8112 2.411677  < 0.05
May 0.39695 0,072,926 243.9702 5.443204  < 0.001
June 0.295445 0.059703 175.842 4.948552  < 0.001

Table 3 Parameters of  the  linear model examining the  influence of  time, sex and  species on  the  telomere length of  F. 
labordi and F. cf. nicosiai 

Bold indicates the significant values

Fixed effects Estimate SE t-value P F df P

Intercept 0.8249 0.1162 7.100  < 0.001 25.67 80  < 0.001
Species F. cf. nicosiai 1.3070 0.1660 7.871  < 0.001
April − 0.1001 0.1291 − 0.775 0.441

May − 0.1343 0.1229 − 1.092 0.278

sex male − 0.1015 0.1055 − 0.962 0.339

species F. cf. nicosiai April − 0.3844 0.2378 − 1.616 0.11

species F. cf. nicosiai May − 0.5464 0.2001 − 2.731  < 0.01
Species F. cf. nicosiai sex male − 0.5176 0.1773 − 2.919  < 0.01
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profiles of an iguanid species, Davis et al. [62] reviewed 
several studies of white blood cell profiles of iguanids 
and other lizard species. They extracted data on the 
relative numbers of all cell types (mean percentages) 
and categorized the studies based on whether lizards 

were from captivity or the wild. They showed that all 
wild animals had higher H/L ratios than the captive 
conspecifics. In fact, the relative abundance of lympho-
cytes and heterophils was completely opposite in both 
groups, with lymphocytes being the most abundant 
leukocyte type in captive lizards and heterophils being 
most common one in wild specimens. Thus, either wild 
lizards naturally have higher baseline stress levels (and 
thus higher H/L ratios) than captive ones, or trapping 
of wild animals induced stress-related alterations in the 
animals’ leukocyte profiles, a notion also supported by 
the elevated H/L ratios of the captive F. labordi in our 
study.

During a stress response, GC secretion increases 
partly to mobilize more metabolic energy to deal with 
the stressor. While this stress response provides obvi-
ous short-term benefits, chronic elevation of GCs is 
harmful [19, 63–65]. In the present study, we observed 
stress-related changes in leukocyte profiles in both 
chameleon species, which may indirectly contribute 
to their rapid senescence after the reproductive sea-
son. Captive F. labordi showed comparatively lower, 
but in relation to other captive lizards, elevated H/L 
ratios [62], indicating that they perceived these captive 
conditions as mildly stressful, but that they were also 
buffered from major environmental stressors. It is pos-
sible that the brief biweekly handling to obtain blood 
samples might have contributed to the perceived stress 
level of caged individuals, but this manipulation did 
most likely not impact the measurements of H/L ratios 
because such effects were found only after 12 h in other 
species [25].

Any interpretation of the potential physiological effects 
of variable H/L ratios should take into account that a 
review published after our field work found inconsistent 
relationships between GC profiles and leukocyte pro-
files across studies [66]). In gopher tortoises, Gopherus 
polyphemus, both GC levels and leucocyte profiles 
changed across seasons, but the changes were not cor-
related [67]. Moreover, in two studies of garter snakes, 
Thamnophis sirtalis, conducted by the same research 
group, but on different populations and in different years, 
one study revealed a positive correlation between GC 
levels and H/L ratio [68], whereas the other did not [69]. 
Furthermore, the interpretation of leukocyte dynam-
ics relies on baseline data for the taxon of interest [66]. 
Reports about leukocyte profiles in chameleons in the 
wild [60, 61] and captivity [59] are rare and based on rela-
tively small sample sizes. Our study therefore contributes 
valuable comparative data based on large samples of two 
wild chameleon species, but future studies may want to 
assess stress levels more directly, e.g. by measuring GC 
levels from fecal samples.

Fig. 2 Relative telomere length of adult wild specimen of F. labordi 
(n = 66) and F. cf. nicosiai (n = 39). Boxplots depict relative TL per 
species and sex from March until June

Fig. 3 Relationship between H/L ratio and TL in F. labordi (n = 66) and 
F. cf. nicosiai. (n = 39)
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Telomere dynamics
Telomere dynamics differed between the two chame-
leon species. Telomeres were relatively longer in F. cf. 
nicosiai, but shortened rapidly with the disappearance of 
the adult cohort. In contrast, the telomeres of F. labordi 
were relatively short, but a deterioration over time was 
not detectable. The first 3 months in the life of F. labordi 
are characterized by fast growth rates, whereas juvenile 
F. cf. nicosiai show much slower growth and reach matu-
rity at an age of 11–12 months [70]. The lifespan of F. cf. 
nicosiai is longer, but both species mate at the same time 
and die off afterwards. A study of wild jackdaws (Corvus 
monedula) revealed that long telomeres shorten more 
rapidly than short ones, regardless of the individual’s age 
[71]. Additionally, telomere degradation was highest in 
humans with long telomeres [72]. These studies suggest 
that mechanisms for telomere maintenance exist in vivo, 
which potentially protect the shortest telomeres from 
further attrition and might explain why we could not 
detect any significant TL reduction in F. labordi. It would 
therefore seem interesting to also examine telomerase 
activity in these species. In ectothermic vertebrates, the 
expression of telomerase is frequently found in somatic 
tissues and is thought to be due to the indeterminate 
growth [73]. Thus, regulation by this enzyme might ena-
ble F. labordi to maintain its TL up to a certain level.

Whether TL is a universal predictor of longevity is still 
up for debate. Whittemore et al. [74] found that the tel-
omere shortening rate, but not the initial telomere length 
alone, is a powerful predictor of life span in several bird 
and mammal species. These results support the notion 
that critical telomere shortening and the consequent 
onset of telomeric DNA damage and cellular senescence 
are a general determinant of species life span. In humans, 
telomere attrition is also more rapid in the first decade of 
life, stabilizes in adulthood and is followed by a gradual 
loss at old age [75]. We could not study telomere dynam-
ics because of low recapture rates and a lack of data on 
juveniles, but a relatively large male juvenile F. cf. nicosiai 
was sampled at approx. 4 months of age and showed a TL 
of 3.44, which was the highest measured in this species. 
In contrast, TL of hatchling pythons (Lisais fuscus) was 
significantly shorter than that of older snakes, increasing 
during their first year of life and subsequently decreas-
ing with age [76]. Similar curvilinear telomere dynamics 
were found in frilled-necked lizards (Chlamydosaurus 
kingii) [77].

In F. cf. nicosiai, we also observed sexual dimorphism 
in telomere length across the sampling period, with 
females having longer average telomeres. The associated 
longer female survival may be adaptive as the maturation 
of eggs after insemination takes several weeks, and female 
chameleons are capable of producing additional clutches 

from stored sperm ([78], FE pers. observation). In sev-
eral other species, including sand lizards (Lacerta agilis) 
[79], Medaka fish [80]) and humans [36], females also 
live longer and have longer telomeres. The actual mecha-
nisms contributing to sex-specific telomere patterns are 
unknown, however. Previous work on humans suggested 
that the difference in TL stems from larger body mass in 
men compared to women [81], leading to the assump-
tion that larger bodies require more tissue growth and 
cell division. However, female sand lizards are larger than 
males [82] and have longer telomeres. Gopalakrishnan 
et al. [80] postulated that estrogen is a key factor contrib-
uting to the decelerated telomere shortening in female 
Medaka fish, but corresponding data from other species 
are lacking. Thus, telomere attrition probably depends on 
multiple factors that remain to be identified.

Nowadays, telomere attrition is widely recognized 
as one of the hallmarks of aging (e.g. [83]), and telom-
eric assessments are widely used in evolutionary biol-
ogy as biomarkers of somatic integrity. However, limited 
attention has been paid to addressing the fundamen-
tal question raised by these relationships: Which role 
do telomeres play in shaping the evolution of life his-
tory trade-offs and senescence [84]? While it is broadly 
accepted that telomere degradation can have causal 
effects on cell fates, the extent to which it contributes to 
age-related declines on organismal level is less clear. A 
proximate causal role for telomeres would more possibly 
reflect an adaptive strategy, born out of telomere main-
tenance costs and/or a function for telomere attrition 
(e.g. in counteracting cancer), the relative importance of 
which is currently unclear. Nevertheless, it is frequently 
mentioned that telomere length as a predictor of over-
all health could instead reflect it acting as a non-causal 
biomarker of accumulated damage to other biological 
structures that themselves have causal deleterious effects 
on the organismal performance (e.g. [85]). While it is 
mechanistically conceivable that telomere dynamics are 
one proximate cause of current–future trade-offs and 
senescence, whether telomeres play a significant proxi-
mate causal role relative to alternative mechanisms, such 
as oxidative damage to other biological structures, is cur-
rently uncertain [84]. Finally, advances in understanding 
of the selection pressures that might have shaped a proxi-
mate causal role for telomeres according to life history 
trade-offs have the potential to shed light on the nature 
of the evolutionary restrictions at play in life history evo-
lution and help explain the form of the current–future 
trade-offs and ageing trajectories [84].

Stress-related leukocyte profiles and telomere shortening
In both species, we found a negative correlation between 
average H/L ratio and TL. Chronical stress has potentially 
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negative consequence through an increase in oxidative 
damage [42, 43] and ultimately telomere shortening [45]. 
Oxidative stress also dramatically decreases telomer-
ase activity [86, 87]. Therefore, oxidative stress not only 
accelerates telomere shortening by direct damage to tel-
omeres, but also by inhibiting telomere restoration as 
well. Even though we are well aware of the correlational 
nature of our study, we suggest that physiological stress 
negatively affected TL in our two study species. Although 
our findings and additional studies suggest a strong asso-
ciation between stress and telomere shortening [88, 89], 
we cannot discard other mechanisms that could affect 
TL, like alterations of early growth rates (e.g. [90]). More 
direct future studies should acknowledge that the link 
between stress response and telomere degradation is 
probably not straightforward and depends on the bene-
fits and costs of activating an emergency life history state 
that is species- and context-dependent.

At an ultimate level, rates of extrinsic mortality are 
thought to determine where a species falls on the slow-
fast continuum, with high rates of extrinsic mortality 
selecting for fast life histories [91]. The results of our 
previous capture-mark-recapture study [70] also suggest 
that extrinsic mortality rates in both chameleon species 
are presumably high in adults. Williams also postulated 
that juvenile mortality has no influence on the evolu-
tion of senescence; predicting that senescence should be 
associated with extrinsic mortality rates [100]. However, 
formal, mathematical theory [92–94] showed that this 
particular prediction is wrong. Accordingly, selection 
leading to senescence does not directly depend on sur-
vival to old age, but rather on the shape of the stable age 
distribution. The aim of evolutionary theories of aging 
is to clarify why organismal fitness mechanisms decline 
with age. Moorad et al. [95] therefore proposed to inves-
tigate the actual phenomenon of aging, not its proxies. 
More theory and careful physiological measurements 
from many species under many different environmental 
conditions are therefore required to further illuminate 
factors that shape life histories. Remarkably, Reznick and 
colleagues [96] even found that guppies (Poecilia reticu-
lata) derived from natural populations with high levels 
of predation live the longest in the laboratory. This study 
demonstrates that our understanding of the evolution of 
senescence will profit from modeling numerous aging 
parameters, traits other than age at death as well as the 
causes of mortality.

Although there are many examples of negative cor-
relations between lifespan and the apparent extrinsic 
risk of death faced by organisms, this risk is more often 
deduced than measured. In our study species, besides 
extrinsic mortality at old age, several factors might 
impact the short lifespan of this species. High juvenile 

mortality in F. labordi might lead to the extremely high 
investment in reproduction that in turn facilitates the 
pronounced stress response and relatively short telom-
eres. As physiological stress also has a strong influence 
on immune responses [97], the increasing gastrointesti-
nal—and blood parasite burden observed in both species 
in the wild towards the dry season [98] might reflect an 
unavoidable consequence of this adaptation. This notion 
about the physiological processes contributing to such a 
short life span in F. labordi is also supported by a maxi-
mum lifespan in caged individuals of 16 months, indicat-
ing that their lifetime is indeed bounded by molecular 
and cellular mechanisms of aging.

Conclusions
The results of our study provide rare information about 
leukocyte profiles and telomere dynamics in relation to 
senescence and mortality patterns of two chameleon 
species in the wild. The results of this study suggest that 
the presumably energetically demanding reproductive 
season in the short-lived species contributes to envi-
ronmental stress ensued by increased oxidative dam-
age and subsequent accelerated telomere shortening. To 
fully understand telomere dynamics and their relation to 
stress-related measures (H/L profiles) in these species, 
repeated samples from wild specimens and samples from 
younger life stages are necessary, however.

Methods
Study site and study species
This study was conducted in Kirindy Forest, which is 
located in the region of Menabe Central, Western Mad-
agascar, ca. 60  km northeast of Morondava (44°39′E, 
20°03′S, 30–60  m asl). It is one of the largest remain-
ing Malagasy dry deciduous forest fragments. The local 
climate is characterized by a hot wet season between 
November and April, followed by a cool dry season from 
May to October [99]. Kirindy Forest is located near the 
northern end of the range of Furcifer labordi, a medium-
sized and sexually highly dimorphic chameleon from the 
western and southwestern regions of Madagascar [96]. 
Furcifer cf. nicosiai is a relatively larger species, also sexu-
ally dimorphic [70], and appears to be limited to intact 
dry forests [100, 101].

Capture-mark-recapture study
Wild chameleons were located at night using LED flash-
lights. The capture location was marked and GPS data 
were taken. We sampled alternating along two transects 
of 3  km length each. Animals were transported to the 
nearby research station in cloth bags and handled the 
following morning. They were sexed, age categorized 
(hatchling, juvenile, adult), and their snout vent length 
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(SVL) was measured. Animals were individually marked 
by visual implant elastomers (VIE; Northwest Marine 
Technology Inc., Shaw Island, WA) [102]. Hatchlings 
and small juveniles were individually marked with nail 
polish on the toes. All chameleons were released at their 
point of capture within 12  h. Sampling took place over 
three field seasons: November 19, 2013–July 8, 2014, and 
January 11, 2015–July 15, 2015, and October 12, 2015–
December 17, 2015.

Experimental housing
We collected a total of 20 male and 20 female juveniles of 
F. labordi in early January, at approximately two months 
of age, and kept them individually without visual contact 
in cylindrical nylon cages (90  cm height, 60  cm diame-
ter) inside a large outdoor forest enclosure. Chameleons 
received a standardized amount of insects, adjusted to 
their age and size to match growth and final size of the 
wild population. Specifically, animals were fed five times 
per week with two grasshoppers, crickets or butterflies. 
Water was offered daily with a spray flask. Between Feb-
ruary and June, the caged animals were handled biweekly 
to obtain blood samples. Only captive animals were sam-
pled repeatedly.

Leukocyte profiles
To measure leukocyte profiles, a drop of blood was 
taken by lateral puncture of the caudal vein. No blood 
was taken from females that were obviously gravid. The 
drop of blood was placed on a microscope slide and dis-
tributed as a blood smear. After air-drying, blood smears 
were processed with a rapid differential haematology 
staining utilizing the Diff-Quik staining solution system 
(Medion Diagnostics AG, Düdingen, Switzerland). We 
determined the ratio of heterophils to lymphocytes (H/L 
ratio) in at least 200 cells per slide, using the 100 × oil 
objective. For identification, the general description of 
reptilian blood cells and terminology was used [103, 104]. 
Counting of the leukocytes started at the most distal edge 
of the feather end of the smear and proceeded one field 
of view at a time, across the entire smear in an ‘S’ fashion. 
Only fields of view with > 15 erythrocytes in a monolayer 
were considered [105]. All cell counting was conducted 
by FE. Blood samples were taken from February onwards 
until mid-July in 2014 and 2015. In total, 319 samples 
from wild F. labordi, 103 samples of F. cf. nicosiai and 278 
samples from 40 captive animals were analysed.

Telomere length (TL)
Blood samples for telomere analysis were taken between 
March and mid-July in 2015. In total, 66 blood samples of 
F. labordi and 39 of F. cf. nicosiai were obtained. Captive 

animals were excluded from this analysis because not 
enough blood samples were available.

For the determination of TL, we took approx. 5–10 µl 
blood from the caudal vein after lateral puncture with a 
capillary and transferred it into a 1.5  ml tube contain-
ing 0.5  ml SET buffer. Samples were directly frozen at 
−  20  °C. To avoid melting during transportation, sam-
ples were stored in a compressor cooling box. Telomere 
length was measured using real‐time quantitative PCR 
(qPCR) using SensiMix SYBR No‐ROX Kit (Bioline, Syd-
ney, NSW, Australia) and a Rotor‐gene 6000 thermocy-
cler (Qiagen, Chadstone, VIC, Australia) according to 
published protocols [106, 107] using techniques devel-
oped by [8] with the 18S ribosomal RNA (18S) gene as 
the non-variable copy number reference gene. The tel-
omere primers used were Telb1 (5′‐CGG TTT GTT TGG 
GTT TGG GTT TGG GTT TGG GTT TGG GTT‐3′) and 
Telb2 (5′‐GGC TTG CCT TAC CCT TAC CCT TAC CCT 
TAC CCT TAC CCT‐3′, (109)). The 18S gene (92 bp ampli-
con in Anolis) was selected as the reference gene as it had 
previously been validated in reptiles [8,  107, 109]. The 
primer sequences used were 18S‐F (5′‐GAG GTG AAA 
TTC TTG GAC CGG‐3′) and 18S‐R (5′‐CGA ACC TCC 
GAC TTT CGT TCT‐3′). Reactions were run in triplicate 
for each sample, with each run containing either Telb or 
18S primers. Amplifications were carried out in a Rotor‐
Gene 6000 thermocycler (Qiagen, Australia) using an ini-
tial Taq activation step at 95 °C for 10 min and a total of 
40 cycles of 95 °C for 15 s, 60 °C for 15 s, and 72 °C for 
15 s. Each reaction had a final volume of 20 μl with 10 ng 
of DNA. A melt curve was generated after each run over 
the temperature range of 60 to 95 °C to ensure that there 
was no nonspecific product amplification.

All of the DNA samples for a given individual were 
included in the same run. No‐template control reactions 
were run in triplicate for each primer set during every 
qPCR run to ensure that there was no contamination.

Statistical analyses
Linear models (LM) were used to examine the influ-
ence of leukocyte profiles on TL in wild F. labordi and 
F. cf. nicosiai. As fixed factors, we added month (age), 
sex and species. For captive F. labordi, we used linear 
mixed models (LMM). As fixed factors, we added month 
(age), and sex, while ID was included as a random fac-
tor for recaptured samples. For all models, we compared 
the respective full model with the null model by using a 
likelihood ratio test. In addition, we visually inspected 
normality and homoscedasticity with residual plots. For 
model analysis, we used the package lme4 [109]. All data 
analysis was conducted in R (R-Code Team 2017) [110]. 
To check for correlation between H/L profile and TL, we 
calculated the Pearson correlation coefficient.
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