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Abstract

Background: Models of codon evolution have proven useful for investigating the strength and direction
of natural selection. In some cases, a priori biological knowledge has been used successfully to model
heterogeneous evolutionary dynamics among codon sites. These are called fixed-effect models, and they
require that all codon sites are assigned to one of several partitions which are permitted to have
independent parameters for selection pressure, evolutionary rate, transition to transversion ratio or
codon frequencies. For single gene analysis, partitions might be defined according to protein tertiary
structure, and for multiple gene analysis partitions might be defined according to a gene's functional
category. Given a set of related fixed-effect models, the task of selecting the model that best fits the data
is not trivial.

Results: In this study, we implement a set of fixed-effect codon models which allow for different levels of
heterogeneity among partitions in the substitution process. We describe strategies for selecting among
these models by a backward elimination procedure, Akaike information criterion (AIC) or a corrected
Akaike information criterion (AlCc). We evaluate the performance of these model selection methods via
a simulation study, and make several recommendations for real data analysis. Our simulation study
indicates that the backward elimination procedure can provide a reliable method for model selection in
this setting. We also demonstrate the utility of these models by application to a single-gene dataset
partitioned according to tertiary structure (abalone sperm lysin), and a multi-gene dataset partitioned
according to the functional category of the gene (flagellar-related proteins of Listeria).

Conclusion: Fixed-effect models have advantages and disadvantages. Fixed-effect models are desirable
when data partitions are known to exhibit significant heterogeneity or when a statistical test of such
heterogeneity is desired. They have the disadvantage of requiring a priori knowledge for partitioning sites.
We recommend: (i) selection of models by using backward elimination rather than AIC or AlCc, (i) use
a stringent cut-off, e.g,, p = 0.0001, and (iii) conduct sensitivity analysis of results. With thoughtful
application, fixed-effect codon models should provide a useful tool for large scale multi-gene analyses.
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Background

The ratio d\/ds (w) has proven a valuable index of the
strength and direction of selection pressure. Because
genetic data are typically subject to a diversity of evolu-
tionary constraints, estimating @ as an average over many
sites diminishes the effectiveness of this approach [1]. Sta-
tistical power is substantially improved, however, by
accommodating variable selection pressures among sites
(e.g., [2-4]). We follow Kosakovsky Pond and Frost [5] by
placing such methods in three groups: (i) the counting
methods, which estimate @ from counts of substitutions
at individual sites (e.g., [3]), (ii) the random-effect mod-
els, which assume a parametric distribution of variability
in the w ratio across sites (e.g., [2]), and (iii) the fixed-
effect models, which assume sites can be assigned a priori
to different partitions [4]. The most generalized form of
the fixed-effect models treats each site as an independent
partition [5,6].

The recent growth of genome scale sequencing projects
has sparked interest in using codon models to study
mechanisms of innovation and functional divergence in
genome-scale datasets [7]. Although the fixed-effect mod-
els were developed for analysis of multiple partitions of
sites within a single gene, they are also appropriate for
joint analyses of multi-gene datasets [4,8]. Fixed-effect
models categorize codon sites into different classes which
are allowed to have heterogeneous evolutionary dynam-
ics, and such partitions are easily delineated on the basis
of complete gene sequences. Moreover, by partitioning
genes according to criteria such as their functional cate-
gory, or role in a metabolic pathway, the fixed-effect mod-
els provide a statistical framework for making use of such
information when analysing multi-gene datasets.

Yang and Swanson [4] introduced six fixed-effect models
(Table 1) based on the codon model of Goldman and
Yang [9]. The simplest model (A) assumes that the pattern
of substitution is homogeneous over all sites; i.e., there are
no partitions under model A. Branch lengths are included
as parameters of the model. The most complex model (F)
treats the different site partitions as independent datasets,

Table I: Fixed-effect models implemented by Yang and Swanson [4].

having independent model parameters. As it involves a
substantial increase in branch length parameters, model F
is not recommended for datasets with many partitions [4].
The remaining four models (B-E in Table 1) lie between A
and F in complexity. These four models scale the branch
lengths of k partitions according to the parameter ¢,
which is a multiple of the branch lengths of the first parti-
tion; hence ¢; = 1. Models B through E differ in their treat-
ment of parameters @, x (transition to transversion ratio)
and 7 (codon frequencies) among partitions (Table 1).
We implemented 11 more fixed-effect models, which rep-
resent all the remaining combinations of heterogeneity or
homogeneity among partitions for the parameters ¢, @, x
and 7z (Table 2). A full description of the fixed effect mod-
els and the details of our implementation are presented in
the methods section. Hereafter we refer to the complete
set of fixed-effect (FE) models by using the revised nota-
tion shown in table 2 (FE1-FE16). Note that a capacity to
specify fixed-effects under the alternative formulation of
Muse and Gaut [10] is available through the program
HyPhy [11], although it has not been documented.

Given a related set of fixed-effect models (Figure 1), one is
immediately faced with the non-trivial task of selecting
the model that best fits the data in hand. Likelihood ratio
tests (LRTs) have been shown to be a powerful and relia-
ble means of testing site specific heterogeneity in selective
pressure [8,12]. However, Figure 1 illustrates that there are
32 possible nested comparisons of models. It is not desir-
able to conduct 32 LRTs because computational costs are
expensive for datasets with too many sequences or parti-
tions. A popular method of model selection based on
LRTs is "backward elimination" [13-15]. Backward elimi-
nation reduces a comparatively complex model to a sim-
pler one in a step-by-step fashion. An alternative to
"backward elimination" is the Akaike Information Crite-
rion (AIC) [16], where the model with the smallest AIC
score is chosen as the ideal model. For a small sample cor-
rection, typically when the number of observations is less
than 40 times the number of parameters in the model
[17], we borrowed the corrected Akaike Information Cri-

Model code Parameters for partitions Number of Parameters
A same branch lengths, k; @, and 7's b+2+9

B different but proportional branch lengths, same & @, and 7's b+(g-1)+2+9

C different but proportional branch lengths, same & @, and different 7's b+(g-1)+2+gx9

D different but proportional branch lengths, different x; @, and same 7's b+(g-1)+gx2+9

E different but proportional branch lengths, different x; @, and 7's b+(g-1)+gx2+gx9

F different branch lengths, x; @, and 7's gx(b+2+9)

The number of parameters is computed under the F3 X 4 method of estimating codon frequencies. b denotes the number of branches in the tree. g
denotes the number of site classes. When models employ empirical estimates of each codon frequency (F61 method) the number of model
parameters increases by 51 for models with homogenous 7's, and by 51 x g for models with heterogeneous 7's among partitions.
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Table 2: An expanded set of fixed-effect models.

Parameters heterogeneous among partitions

New code K w
I (E) Yes Yes Yes
2 (D) Yes Yes Yes
3 Yes Yes No
4 Yes Yes No
5 Yes No Yes
6 Yes No Yes
7 Yes No No
8 Yes No No
9 No Yes Yes
10 No Yes Yes
I No Yes No
12 No Yes No
13 (C) No No Yes
14 (B) No No Yes
15 No No No
16 (A) No No No

V4 Number of parameters
Yes b+12g-1
No b+3g+8
Yes b+llg
No b+2g+9
Yes b+llg
No b+2g+9
Yes b+10g+1
No b+g+10
Yes b+llg
No b+2g+9
Yes b+10g+1
No b+g+10
Yes b+10g+1
No b+g+10
Yes b+9g+2
No b+11

Number of parameters is for the F3 X 4 method of estimating codon frequencies. b and g denote the number of branches and the number of site
classes, respectively. Letters in parentheses indicate the model codes formerly used by Yang and Swanson [4].

terion (AICc) originally developed by Hurvich and Tsai
[17] for regression settings.

Although the statistical issues surrounding model selec-
tion are well known within the field of molecular evolu-
tion [18-20], the established statistical techniques have
not been applied to the fixed-effect setting. In this study
we used computer simulation to evaluate the performance
of backward elimination, AIC and AICc for selecting an
optimal model from an array of models specifying differ-
ent levels of heterogeneity among partitions. We then
illustrated the application of these methods on two real
datasets. The first was comprised of the buried and
exposed sites of the abalone sperm lysin gene; this lysin
partition was one of the original test cases of Yang and
Swanson [4]. For the second case, we examined the evolu-
tionary heterogeneity of a multi-gene dataset; the region
of the genome encoding all the components of the flagel-
lar system of Listeria species and several proteins of
unknown function.

Results

Simulated data

A simulation study was used to measure the accuracy of
fixed-effect model selection. We simulated under the 16
different scenarios for heterogeneous codon evolution
among data partitions shown in table 2 (see methods for
a detailed description of the simulation study), and meas-
ured the number of cases where each procedure identified
the correct generating model. The backward elimination
procedure uses the likelihood ratio test (LRT) to simplify

a complex model one parameter at a time; in this case we
start at the top of Figure 1 (FE1) and use the LRT to
remove non-significant parameters in a step-wise fashion.
A more detailed description is provided in the methods.
When we applied the LRT under a cut-off probability of
0.05, the backward elimination procedure provided more
accurate model specification than either AIC or AICc in all
the cases except for model 2 (Table 3). Among all 336
datasets, the accuracy of backward elimination was 78%
whereas the accuracy of AIC and AICc was 63% and 64%
respectively (Table 3). Note that each model can be
related to all other models by the number of connections,
or "steps”, between them in Figure 1. For all models that
are wrongly specified by backward elimination, most were
just one step away from the true model (85%). Among
these 1-step wrong models, there was a bias in the direc-
tion of greater complexity for one of @, x or ¢; replicates
heterogeneous for these parameters were never misclassi-
fied as homogenous. Taken over all replicates homoge-
nous for @, xor ¢, this bias was generally low, with 1-step
error rates of 13%, 9% and 9% respectively.

Similar results were observed for AIC and AICc. Most mis-
classifications were 1-step errors (77% and 78%), with a
bias in the direction of greater complexity for parameter
, x or ¢. Again, heterogeneous replicates were not mis-
classified as homogenous for these parameters. The 1-step
error rates across replicates homogenous for @, xor c were
28%, 18% and 26% for AIC, and 26%, 17% and 22% for
AlCc.
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Figure |

Relationships among fixed-effect codon models. The most complex model (FEI) is located at the top and a completely
homogenous model (FEI6) is located at the bottom. Parameters heterogeneous among partitions for a given model are shown
after the model name. Lines between models indicate "|-step” differences in complexity among the models.

As the number of misclassification errors >2-steps was
much smaller than the number of 1-step errors, we exam-
ined these as an average over backward elimination, AIC
and AICc. In 90% of the cases these errors resulted in too
simple a model. The involved parameters were @, c and 7
the x parameter was rarely misclassified.

We simulated under two models of codon frequencies: (i)
unbiased (7, = 1/61) and (ii) biased frequencies taken
from empirical frequencies of the lysin gene. In composite
datasets with a 90:10 partition the number of codons in

the smaller partition is too low for reliable empirical esti-
mation of 61 different codon frequencies ("F61"
method). Hence, in only those cases we used the "F3 x 4"
method, which computes codon frequencies from nucle-
otide frequencies at the three positions of the codon [9].
In the 50:50 and 70:30 datasets we used the empirical esti-
mates of codon frequencies (F61) in each partition. We
note that such empirical estimates do not satisfy the
requirements of LRT [21] and, hence, the backward elim-
ination procedure. For backward elimination the 1-step
error rate for incorrectly specifying heterogeneous 7 was
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Table 3: Accuracy of model selection under backward elimination, AIC and AlCc. Letters in parentheses indicate the model codes

formerly used by Yang and Swanson [4].

Backward elimination

Model Heterogeneous parameters p =0.05 p =0.0001 AIC AlCc
I (E) K o, C s 100% 96% 91.7% 91.7%
2 (D) K oc 92% 100% 91.7% 100.0%
3 K @ 7's 61% 67% 38.9% 33.3%
4 K o 94% 100% 77.8% 83.3%
5 K C s 88% 92% 62.5% 66.7%
6 KcC 79% 100% 75.0% 75.0%
7 K 7Ts 67% 67% 44.4% 44.4%
8 K 83% 100% 55.6% 55.6%
9 ¢, 7's 71% 83% 58.3% 58.3%
10 , c 79% 96% 75.0% 75.0%
I w, s 50% 67% 38.9% 38.9%
12 w 89% 100% 66.7% 66.7%
13 (C) C, 7's 83% 88% 62.5% 58.3%
14 (B) c 63% 88% 58.3% 58.3%
15 s 56% 61% 38.9% 38.9%
16 (A) none 83% 100% 38.9% 55.6%
overall 78% 88% 63% 64%

6%, and for incorrectly specifying homogenous 7 was
14%, indicating a greater tendency towards too simple a
model. For AIC and AICc, the misspecification of 7 was
almost entirely for too simple a model. Note that most of
these errors were made in the 90:10 datasets, suggesting
that misspecification of codon frequency heterogeneity is
mainly due to large empirical estimation-errors of codon
frequencies due to the insufficient information of small
partitions. Thus power is lowest to identify heterogeneity
in codon frequencies when a partition consists of a small
number of codon sites. We anticipate that power also will
be low in larger partitions of real datasets where the differ-
ence among partitions is not as great as in our simula-
tions.

Next we investigated the possibility of tuning the cut-off
p-value of the backward elimination procedure to
improve the accuracy of model specification. We evalu-
ated accuracy for cut-off p-values of 0.01, 0.001 and
0.0001. Substantial improvements were obtained, with
average accuracy increasing from 78% (under the original
cut-off p-value of 0.05) to 83%, 87% and 88% (Table 3)
respectively. Under a cut-off value of 0.0001, 39 models
were misspecified, with 33 being too simple with respect
to codon frequencies in the 90:10 datasets. Among the 6
remaining misspecified models, 4 were too complex for @
and 2 were too complex for 7. All but one of the misspec-
ified models under cut-off p = 0.0001 were one-step
errors. Based on these findings we used a cut-off p =
0.0001 in our application of these models to real data.

Abalone sperm lysin gene

Abalone sperm lysin is a reproductive protein well known
for rapid evolution under strong diversifying selection
[22]. We partitioned the lysin dataset into the same set of
46 buried sites and 88 solvent-exposed sites as in Yang
and Swanson [4] and applied backward elimination (cut-
off p = 0.0001), AIC and AICc to select among the full set
of fixed-effect models. Under backward elimination, we
used the likelihood ratio test to compare FE1, which
assumes different 5 @, ¢, and 7's for buried and exposed
sites, with those nested models at the next level in Figure
1 (FE2, FE3, FE5 and FE9). Each model at the next level
assumes one of these four parameters (x; @, ¢ or 7) is
homogeneous among site classes. FE9 assumes homoge-
nous x for both buried and solvent-exposed sites, and the
likelihood ratio statistic comparing FE1 against FE9 is 2 x
(4474.75-4473.88) = 1.74, which is not significant (d.f. =
1; p = 0.1871). As all other LRTs at this level are signifi-
cant, we simplified our model according to x and com-
pared FE9 to those models nested at the next level in
Figure 1 (FE10, FE11 and FE13). As subsequent LRTs
involving FE9 were significant, model FE9 was selected by
backward elimination. We note that even when we use a
cut-off p = 0.05, we still select FE9 by backward elimina-
tion. Table 4 illustrates that FE9 is also selected by using
AIC or AlCc.

Yang and Swanson [4] conducted LRTs of the subset of
models shown in Table 1 and found that Model E (FE1)
provided the best fit to the lysin data. FE1 and FE9 are
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Table 4: Likelihood scores, parameter estimates, AAIC and AAIC scores for the abalone sperm lysin gene under codon models with

two fixed partitions.

Parameter estimates

Model ¢ c 10} K AAIC (AAIC()
I (E) -4473.88 =1 w, =045 =193 0.3 (6.9)
=254 w,=1.28 =151
2 (D) -4532.12 (=1 ;=039 =173 98.7 (54.2)
=269 w,= 125 K= 151
3 -4535.64 (c=1) w, =0.37 K =227 121.8 (121.8)
=127 =149
4 -4603.44 (c=1) w, =033 x; =203 239.4 (190.2)
=126 K=15
5 -4486.60 =1 =111 K =253 23.7 (23.7)
¢, =256 =147
6 -4548.86 =1 w=1.07 =214 130.2 (81.0)
=272 =147
7 -4550.36 (c=1) w=1.12 K =3.19 149.2 (142.9)
K= 145
8 -4622.36 (c=1) =093 K =255 275.2 (221.6)
=142
9 -4474.75 =1 w; =043 x=1.64 0(0)
¢, =256 =131
10 -4532.38 =1 w, =038 x=1.58 97.3 (48.1)
=270 w,=1.26
Il -4538.32 (c=1) w, =0.34 k=173 125.1 (118.8)
=132
12 -4604.91 (c=1) w,=0.32 x=1.68 240.3 (186.6)
=129
13 (C) -4490.07 =1 o= 1.00 x=1.60 28.6 (22.3)
=26l
14 (B) -4549.99 (=1 w=0.95 x=155 130.5 (76.8)
=276
I5 -4561.36 (c=1) w =096 x=1.95 169.2 (156.7)
16 (A) -4627.03 (c=1) w=0.96 x=1.58 282.6 (224.6)

Parameters in parentheses are fixed. Partition | contained the buried sites and partition 2 contained the solvent exposed sites. AAIC, = AIC, - min

AIC, and AAIC; = AIC; - min AIC..

qualitatively similar in suggesting heterogeneity in @, ¢
and 7z's among the buried (b) and solvent exposed (e)
sites. Moreover, these models provide similar quantitative
estimates of the strength of selection and rate of evolution
in these two partitions (FE1: @, = 0.45, @,=1.28, ¢,= 1, c,
= 2.54; FE9: @}, = 0.43, w,= 1.31, ¢, = 1, ¢, = 2.56). Both
models suggest that buried sites are evolving under strong
purifying selection and exposed sites under diversifying
selection. Note that Yang and Swanson [4] used a model
that specified heterogeneous x's (FE1), as it was not possi-
ble to test for heterogeneity in x's independently of w's
(Table 1). As estimates of @ were very similar under FE1
and FE9, and «'s for partitions under FE1 were very similar
(x,=1.9 and k. = 1.5), the use of FE1 was not problematic
in this case.

Components of the Listeria flagellar system

Listeria are gram positive rod shaped bacteria which are
motile between 4°C and 30°C, and grow in a wide range
of pHs, temperatures, and osmotic pressures. The natural

habitat of Listeria is thought to be soil rich in decaying
matter; however, Listeria monocytogenes is an important
food-borne pathogen of humans and animals capable of
both a free-living and intracellular lifestyle. Interestingly,
the motility of Listeria monocytogenes is thermoregulated,
being reduced above 30°C, and completely shut down
above 37°C [23], temperatures which correspond to their
host intracellular environment. The consensus opinion is
that the shut down of expression of flagellar related pro-
teins, thereby shutting down motility, is an adaptation to
avoid recognition by the hosts innate immune system
[24]. Specifically, recognition of the flagellin protein, a
product of the flaA gene, activates the host inflammatory
responses through Toll-like receptor 5 (TLR5) [25].

Twenty-eight genes encoding putative flagellar related
proteins, including flaA, are located together in the
genome of Listeria. Several proteins having functions
unrelated to flagellar machinery, or unknown functions,
also are encoded in this region of the genome. We ana-
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lysed the genes from this region with three issues in mind:
(i) to test for heterogeneous evolutionary dynamics
among genes, (ii) to examine the evolutionary dynamics
of proteins with unknown function and determine if they
have any similarities to flagellar machinery proteins or
proteins having unrelated functions, and (iii) to compare
selection pressures on flaA with other genes known to
encode flagellar related proteins. We note that thermoreg-
ulation of motility is not always perfect, thereby raising
the possibility that the host's innate immune system is
occasionally able to recognize flagellin [24]. This would
set up selection pressure for a "co-evolutionary chase"
between host and pathogen, leading to an elevated rate of
nonsynonymous evolution in flaA.

Our dataset was comprised of 37 of the 43 genes
(Imo0675 - Imo0717) located contiguously within the
genomes of 5 lineages of Listeria. Two genes (Imo0684
and Imo0711) were excluded because their gene trees
were incompatible with the genome-tree. Four genes
(Imo0677, 1mo0698, Imo0709 and 1mo0712) were
excluded because they were less than 100 codons long.
Next we partitioned the genes according to functional cat-
egory: (i) flagellar machinery (7973 codons), (ii) non-
flagellar functions (1427 codons) and (iii) unknown
functions (2308 codons). We then applied backward
elimination (cut-off p = 0.0001), AIC and AICc to select
among the full set of fixed-effect models (Table 5). Unlike
the lysin example above, the model selected by backward
elimination (FE9) differed from the model selected by
AIC and AICc (FE10). Both FE9 and FE10 indicate hetero-
geneity in ¢ and @, and homogeneity in x among parti-
tions. They differ in that FE9 specifies heterogeneous
codon frequencies and FE10 does not. Clearly, the genes
in this region of the Listeria genome are subject to hetero-
geneous evolutionary dynamics.

Interestingly, genes encoding proteins of unknown func-
tion had levels of selection pressure (FE9: @=0.036; FE10:
@ = 0.038) highly similar to genes encoding proteins
known to comprise the flagellar machinery (FE9: @ =
0.016; FE10: @ = 0.018), whereas those genes that do not
encode components of the flagellar machinery were
evolving under substantially higher relative rates of amino
acid substitution (FE9: @ = 0.11; FE10: @ = 0.11). Genes
encoding several components of the flagellar machinery
(FliO, FliJ, FliT, FlgM, and HliK) are present in other bacilli
but unaccounted for in Listeria. We used BLAST to com-
pare the present set of unknown proteins to other bacilli
and found one case (Imo0715) that was similar to a
known flagellar protein (FliH). We note that the KEGG
database [26] has annotated Imo0715 as a putative flagel-
lar assembly protein. Based on genome location and lev-
els of selection pressure, we suggest that the "unknown"
genes in this dataset represent the best candidates for the

unaccounted components of the Listeria flagellar machin-
ery. Genes that evolve at high rates can be difficult to iden-
tify [27]; however this is not the case here, as estimates of
windicate a relatively slow rate of nonsynonymous evolu-
tion. If these genes indeed encode the missing compo-
nents of the Listeria flagellar machinery, we speculate an
ancestor of Listeria might have acquired them via an LGT
event.

The rapidly-evolving non-flagellar genes encoded (i) a
protein involved in regulating chemotaxis (Imo0691), (ii)
a chemotaxis-related sensory protein (Imo0692), (iii) a
cell surface protein (Imo0701), and (iv) a phage-related
protein similar to transglycosylase (Imo0717). To further
investigate the evolutionary dynamics of these genes we
applied the full set of fixed-effect models to them, with
each having a unique partition. Again, the model selected
by backward elimination (FE9) differed from the model
selected by AIC and AICc (FE10). Results under FE9
(Table 6) and FE10 are consistent in suggesting heteroge-
neous w among them, with one gene, the cell surface pro-
tein, having a substantially higher relative rate of
nonsynonymous evolution. Interestingly, a genome wide
survey of Listeria genes reveals that, in general, cell-surface
proteins exhibit accelerated evolutionary rates as com-
pared to housekeeping genes (unpublished data).

Lastly, we investigated the evolutionary dynamics of flaA
as compared to those genes known to encode flagellar
related proteins. We applied the full set of models to this
subset of proteins, with flaA having a unique partition and
the remaining 23 proteins placed in a second partition. In
this case backward elimination, AIC and AICc selected
model FE13. This indicates that, despite heterogeneity in
both ¢ and 7, selection pressure on flaA does not differ sig-
nificantly from the average for genes encoding a flagellar
related protein. This result supports the hypothesis that
thermoregulation of motility remains an effective adapta-
tion to avoid recognition by the host's innate immune sys-
tem [24], despite sometimes less than perfect control over
gene expression.

Discussion

The simulation results show that under a cut-off p-value =
0.05 the likelihood ratio test is more accurate than AIC
and AICc. With the exception of the 7 parameters, AIC and
AICc chose overly complex models more frequently than
did the backward elimination procedure. For the 7 param-
eters, AIC and AICc chose overly simple models more fre-
quently than did backward elimination. The difference
lies in the different cut-off values that are used to penalize
the more complex model. Take the heterogeneity test of x
as an example (df = 1), the LRT statistic is defined as twice
the difference in log likelihood values between a pair of
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Table 5: Likelihood scores, parameter estimates, AAIC and AAIC scores for genes located in the regions of the Listeria genome

encoding putative flagellar related proteins.

Parameter estimates

Model ¢ c w K AAIC (AAIC()
I (E) -64965.25 =1 ;= 0.02 =197 222 (28.2)
=118 w,=0.03 =159
=142 a;=0.10 K= 1.62
2 (D) -65076.39 =1 ;= 0.02 =191 0.5 (0.6)
=121 w, = 0.04 =176
=137 a;=0.10 k3= 1.62
3 -65000.40 (c=1) w, = 0.02 K =202 88.5 (94.3)
,=0.03 i =156
w;=0.11 3= 1.56
4 -65107.87 c=1 w, =0.02 K =197 59.5 (59.5)
w, = 0.04 =174
w;=0.11 K= 1.57
5 -65106.46 =1 w=0.03 =210 300.7 (306.5)
=121 =154
=159 K= 122
6 -65219.99 =1 w=0.03 K =2.06 283.7 (283.7)
=125 K= 1.68
=151 K= 1.21
7 -65162.07 (c=1) w=0.03 =218 407.9 (413.5)
i = 1.50
=114
8 -65269.12 (c=1) w=0.03 =214 378.0 (377.9)
K= 1.65
K= 115
9 -64969.44 =1 w,=0.02 K=186 26.6 (324
=120 w, = 0.04
=144 a3=0.11
10 -65078.13 =1 w,=0.02 K=185 0 (0)
=122 w, = 0.04
=138 a3 =0.11
I -65007.34 c=1) ;= 0.02 K=1.89 98.4 (104.1)
w,=0.04
w3=0.12
12 -65111.31 c=1 w, = 0.02 K=1.89 62.4 (62.4)
w, = 0.04
a3 =0.11
13 (C) -65124.90 =1 w=0.03 k=183 333.6 (339.2)
=124
;= 1.66
14 (B) -65235.39 =1 w=0.03 K=1.83 310.5 (310.5)
=127
=157
15 -65190.76 (c=1) w=0.03 K= 1.8l 461.5 (466.8)
16 (A) -65292.90 (c=1) w=0.03 K=183 421.5 (421.4)

Parameters in parentheses are fixed. Partition | contained genes known to encode components of the flagellar machinery (7973 codons). Partition
2 contained genes encoding proteins with unknown functions (2308 codons). Partition 3 contained genes encoding proteins with non-flagellar

functions (1427 codons). AAIC; = AIC; - min AIC, and AAIC; = AIC;- min AIC.

nested models: A =2 x (In L(6 | x) - In L(§, | x)). Based
on the LRT under a significance level of 0.05, we reduce
the complexity of the model if A is smaller than the critical
value 3.84. Under AIC we choose a simpler model only
when A < 2; hence, AIC tends toward more complex mod-
els. However when we reduce a model by more than 7
parameters (e.g. homogeneous 7's versus heterogeneous

7's, with d.f. = 9), the critical value becomes 16.92 for the
LRT, which is less than the critical value of A under AIC,
18. In this case, AIC will select the same or simpler model
than the LRT. Note that AICc compares A with 2 x k x n/
(n-2) which is always greater than 2 x k used by AIC,
hence AICc will always choose the same or simpler model
than AIC. This property of AICc had only a small effect on
the results of model selection, as AICc performed only
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Table 6: Likelihood scores and parameter estimates obtained under the model selected by backward elimination for subsets of the
genes located in the regions of the Listeria genome encoding putative flagellar related proteins.

Parameter estimates

Dataset & numbered partitions Model ¢ 4 w K
Rapidly-evolving non-flagellar genes [4 genes] FE9 -8528.24
|. Chemotaxis regulatory protein (=1 w,=0.0001 K =177
2. Chemotaxis-related sensory protein =122 w,=0.03 K=K
3. Cell surface protein ;=535 w;=0.17 5= K
4. Phage-related, similar to transglycosylase =377 w, = 0.05 K=K
Flagellar related genes [24 genes] FEI3 -42796.43
I. flaA gene =1 w, =0.017 K =196
2. 23 other genes =0.14 w,= K=K

Number within square brackets is the number of genes in the dataset. Parentheses indicate a model parameter with a fixed value.

slightly better than AIC but substantially worse than back-
ward elimination.

LRT statistics involving parameters such as @ appear to be
asymptotically 2 distributed for random-effect codon
models; such models employ a parametric distribution
(e.g., the g distribution of Models M7 and M8 [2]) to
accommodate among site variability in the @ ratio. How-
ever, Aagaard and Phillips [8] reported that for compari-
sons of Yang and Swanson's [4] models C and E (FE13
and FE1 in Figure 1), the empirical distribution of LRT sta-
tistics deviated from the expected 2 distribution, leading
to a type I error rate in excess of that specified by the level
of the test. The results of our simulation study suggest this
bias might affect all tests in Figure 1 involving parameters
x, w and c. Several authors have noted that LRT statistics
derived from models that employ empirical estimates of
nucleotide or codon frequencies might not be well
approximated by a 32 distribution [8,28]. Moreover, when
Aagaard and Phillips [8] repeated their simulation study
under equal codon frequencies and computed LRT statis-
tics by using models with frequency parameters fixed to
the true values (7; = 1/61), they found that the LRT statis-
tics matched the 2 expectation. Aagaard and Phillips [8]

suggested that the approximation of codon frequencies is
the source of the observed bias in the LRT.

Indeed, empirical estimates do not satisfy the require-
ments of LRT [21], and consequently the backward elimi-
nation procedure. To further investigate the impact of
empirical estimates on model selection, we reanalysed all
the simulated datasets under the true codon frequencies;
i.e., those used to generate the data. We note that for a
given dataset the empirical codon frequencies yielded
higher likelihood scores than did the true frequencies.
This was expected, as empirical estimation will "pick up"
some of the sampling errors in each simulation replicate.
We found that the accuracy and bias of backward elimina-
tion, AIC and AICc under the true codon frequencies were
identical to those when empirical codon frequencies were
used. This suggests that bias in the model selection proce-
dures used here did not arise from empirical estimation of
7's alone.

There are several possible explanations for the bias of all
three model selection methods in the direction of greater
complexity for one of @, x or ¢. One possibility is that

Table 7: Parameter values used in simulations of two-partition datasets.

Homogeneous parameter values

Heterogeneous parameter values

partition | partition 2 partition | partition 2
Rates =1 o= =1 =3
=1 =9
Selection pressure o, =0.25 w,=0.25 o, =0.25 w,=0.75
w,=0.75 @, =0.75 w,=0.75 w, =225
w, =225 w, =225 w,=0.25 w, =225
Ts/Tv ratio K =125 =125 K =125 K5 =375
Codon frequencies m =161 = 1/61 m = 1/61 7 = lysin
7, = lysin = lysin 7, = lysin = 1161
The lysin gene was used to obtain empirical estimates of codon frequencies, this is indicated in the table by 7; = lysin.
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potential non-independence among the values for differ-
ent parameters means that AIC might not be a good
approximation to the Kullback-Leibler divergence, and
that the requirements for the 32 approximation might not
be met for the LRT, thus the degree of freedom is not accu-
rate. Also, backward elimination may find a local opti-
mum solution. Under backward elimination the cut-off p-
value is subjectively decided before the tests, leading to
the possibility that the procedure will stop too early and
suggest an overly complex model. This phenomenon is
sometimes seen in the regression context. Clearly, these
issues require further attention; in the mean time we
explored the possibility of tuning the cut-off p-value in
order to improve the performance of backward elimina-
tion (see also [8]). After evaluating several cut-off values
for p, we found that a substantial improvement in per-
formance was obtained by usingp = 0.0001. Moreover, we
found that by using this cut-off, nearly all the tendency to
select an overly complex model for @, x or ¢ was avoided,
and that errors for selecting overly-simplistic models hap-
pen mostly for datasets where one of the partitions was
comprised of a very small number of codon sites.

Our application of fixed-effect models to real data was
encouraging, having uncovered previously unrecognized
heterogeneity among Listeria genes and among sites
within the abalone sperm lysin gene. However, if the
objective is only to identify individual positive selection
sites within a gene, the a priori structural information is
not likely to serve as a perfect proxy for those partitions
most relevant to differences in selection pressures. For
example, Yang and Swanson [4]| showed that the exposed
sites of lysin likely include both conserved and positively
selected codon positions. Hence, averaging @ over all sites
in the exposed partition yields a reduced estimate of pos-
itive selection pressure. We note this effect was the same
under the best-fit model, FE9, as under FE1 (Model E)
used by Yang and Swanson [4]. We agree with Yang and
Swanson [4] in anticipating that the power of random-
effect models to test the strength and direction of selection
pressure at sites within genes will be greater than fixed-
effect models in most cases.

If the objective is to investigate heterogeneous evolution
among genes, as in genome-scale analyses, then fixed-
effect models are useful. The present set of models repre-
sents only a small step towards genome-scale evolution-
ary models. For example, decoupling synonymous and
nonsynonymous rates, as in the random-effect model of
Kosakovsky Pond and Muse [29], would allow users free-
dom to model gradients in synonymous substitution rates
along a genome while allowing independent variability in
nonsynonymous rates among genes. Yang and Swanson
[4] made several suggestions, including the intriguing idea
of enforcing a molecular clock for synonymous changes

and leaving nonsynonymous changes unconstrained. We
predict that joining fixed-effect codon models and data-
mining methods to obtain new methods analogous to
model based clustering [30,31] could provide extremely
useful tools for genome-scale data analysis. Lastly, there is
growing interest in both the performance of codon mod-
els [32,33] and the impact of heterogeneity among genes
[34,35] in multi-gene phylogenetic analysis; improved
ability to model among-gene heterogeneity at the codon
level could improve their utility for comparing alternative
phylogenomic hypotheses.

Conclusion

Random- and fixed-effect codon models have unique
advantages and disadvantages. Random-effect models are
desirable when there is no a priori knowledge by which
sites might be partitioned, or when only a few sites are
expected to comprise a partition of interest (but see [5]).
Their disadvantage is that models for heterogeneity
among sites in features such as the transition to transver-
sion ratio (k) and equilibrium codon frequencies () are
unavailable. Fixed-effect models are desirable when data
partitions are known to exhibit significant heterogeneity
in parameters such as ¢, K or 7z, or when a statistical test of
such heterogeneity is desired. The disadvantage here is
that any uncertainty in the site partition is not accommo-
dated.

The growing importance of phylogenomics and metagen-
omics (e.g., [36,37]) will lead to a greater need for models
suitable for testing hypotheses, and estimating rates and
patterns of evolution, in large multi-gene datasets.
Although considerable development remains to be done,
we believe the present set of models will find many useful
applications provided that results are interpreted with the
inherent limitations of the methods in mind. In particular
we note: (i) power can be low (see also [8]), particularly
when partitions are small, (ii) the accuracy of the parti-
tions may influence the results of model specification and
(iii) the tree topology is assumed to be known without
error. For the time being we make the following recom-
mendations: (i) select among models by using backward
elimination rather than AIC or AICc, (ii) use a stringent
cut-off p-value; p = 0.0001 seems appropriate, and (iii)
sensitivity analysis should be included in an investigation.
Sensitivity of results should be investigated for robustness
to tree topology and model of codon frequencies. We note
that by using Akaike weights [16] to quantify the evidence
in favour of a model, estimates of parameters could be
obtained that accommodate model uncertainties (e.g.,
[19]). Where practical, we recommend that sensitivity to
alternative data partitions also should be explored. Lastly,
any complex model can have convergence problems or
implementation errors; one must always inspect the
parameter estimates for atypical results. With thoughtful
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application, fixed-effect codon models should provide a
useful tool for large scale multi-gene analyses.

Methods

Fixed-effect models of codon evolution

The basic codon model [9,10] assumes that the process of
substitutions from one codon to another is a Markov
process, where the next codon state only depends on the
present state, and not on any past state. The element P;(t)
in the transition matrix P(t) gives the probability of going
from codon i to codon j during time t. Because they do not
occur within a functional protein-coding gene, the three
stop codons, UAA, UAG and UGA, are excluded. The tran-
sition matrix P(t) can be calculated by P(t) = e?, where Q
= {q;} isa 61 x 61 rate matrix. The element g;; denotes the
instantaneous substitution rate from codon i to codon j as
follows:

0 if i and j differ at two or three codon positions,
ur; if i and j differ by a synonymous transversion,

qjj = Mkm;  if iand j differ by a synonymous transition,
o if i and j differ by a nonsynonymous transversion,
wkar, if i and j differ by a nonsynonymous transition.

When a change among codons involves a transition, the
rate is multiplied by & the transition/transversion rate
ratio. In the same way, if the substitution is nonsynony-
mous, the rate is multiplied by @, the nonsynonymous/
synonymous rate ratio. Usage of codons within a gene can
also be highly biased, and consequently the rate is multi-
plied by the equilibrium frequency of the targeted codon
7, which is assumed to remain unchanged between gen-
erations of the evolutionary process. Given prior informa-
tion by which sites can be partitioned into classes,
parameters such as @ x and 7 can be allowed to differ
among partitions, with different Q matrices used for dif-
ferent partitions [4]. Independence among all codon sites
is assumed; hence the log likelihood of the complete data-
set is the sum of the log likelihood of each site [4].

For all fixed-effect codon models described in this paper
(Table 2) the tree topology is fixed a priori and, with the
exception of the codon frequencies, the parameter values
are estimated by numerical maximization of the likeli-
hood function. Codon frequencies are empirically esti-
mated from the data. For parameters heterogeneous
among partitions, we use the maximum likelihood esti-
mation implemented by Yang and Swanson [4]. For the
models with identical substitution rate, we simply fix the
branch length ratio ¢ at 1 across partitions. For models
with homogeneous xor @, we use an algorithm similar to
the Expectation-Maximization (EM) algorithm [38]. Let's
take a single parameter, say @, as an example of a homog-
enous parameter. We first independently estimate the

parameters in each partition by maximum likelihood. At
the "E-step" of the algorithm we obtain the weighted aver-
age of w over all partitions, where the weight is given by
the proportion of codon sites in the corresponding parti-
tion. At the "M-step" we re-estimate parameters heteroge-
neous over partitions after fixing wto its weighted average
value. Following this we run the "E-step" by fixing the
parameters assumed to be heterogeneous, and re-estimat-
ing @ from each partition; an updated estimate of  is
again obtained as the weighted average. The E- and M-
steps are run iteratively until successive estimates of @
converge.

Model selection among a set of related fixed-effect models
Backward elimination reduces the most complex codon
model, shown at the top of Figure 1, to a simpler one in a
stepwise fashion. We begin from model FE1, which
assumes different &, @, ¢, and 7's for different site classes,
and then compare it with simpler models which assume
one of these four parameters to be homogeneous (see next
level in Figure 1). For example, if the hypothesis of homo-
geneous k is not rejected, we will go to FE9 at the next
level in Figure 1, which assumes different @, ¢, 7's but the
same x for different site classes. We then compare FE9
with its nested models at the next level (see FE10, FE11
and FE13 in Figure 1). If more than one homogenous
model cannot be rejected by the LRTs at a given level, the
backward elimination procedure will choose the model
with the largest p-value in the LRT.

Akaike Information Criterion (AIC) is based on minimiz-
ing the expected Kullback-Leibler divergence [39,40]; AIC

=-2xIn L(é | x) + 2 x k, where k denotes the number of
free parameters in the candidate model. For small sam-
ples, the AIC is corrected by a second order bias adjust-
ment in the regression and time series settings in order to
avoid over-fitting, let n denote the number of observa-

tions [17]: AICc=—2xlnL(0A|x)+2><k%. This
n_

adjustment places a heavier penalty on the number of
parameters when the number of observations is not much
larger than the number of parameters; thus AICc tends to
choose a simpler model than AIC. We note that the basis
for this correction is not expected to hold outside of the
regression and time-series settings; however, because we
desired a correction for small samples we evaluated the
performance of AICc by numerical simulations. In our
analysis k denoted the number of parameters in a given
model (Table 2) and n denoted the number of codon
sites. For both AIC and AICc, the model with the smallest
score is chosen as the ideal model.
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The full set of 16 fixed-effect models (Figure 1) is imple-
mented in a modified version of codeml that we make
freely available [41]. The original version of codeml
(3.14b) is one of several programs in the PAML package
[42] distributed by Ziheng Yang [43].

Simulated and real sequence data

We simulated codon evolution by using the "evolver" pro-
gram of the PAML package [42]. There were 16 different
scenarios, based on the heterogeneity or homogeneity of
four parameters (Table 2) among two data partitions.
Parameter values are shown in Table 7. We also varied the
ratio of the number of codon sites contained in each par-
tition (50:50, 70:30 or 90:10). Data were simulated inde-
pendently in two partitions and then concatenated to
obtain a composite dataset. Each composite dataset con-
tained 2000 codons for 16 species. A total of 432 compos-
ite datasets were possible; i.e., the product of 2 options on
K 3 options on ¢, 4 options on 7, 6 options on @ and 3
partition proportions. However, as we had two options
for heterogeneous rates (1:3 or 1:9) and one possibility
for the homogeneous rates (1:1) we made an adjustment
to obtain similar number of datasets for each of the 16
scenarios. Specifically, we simulated under only 4 of the
options on @ (first and second rows for selection pressure
in Table 7) when rates were assumed to be heterogeneous
among partitions (¢, = 3 and ¢, = 9). Thus 2(x) x 2(c) x
4(7) x 2(w) x 3(sites proportion) = 96 possibilities were
not included in our simulation. This strategy provided a
grand total of 336 composite datasets for evaluating the
performance of the different model selection strategies.

The first real dataset was comprised of sequences for the
sperm lysin gene from 25 species of abalone. This is one
of the original test cases of Yang and Swanson's paper [4],
and it is distributed online by Ziheng Yang as part of the
PAML package [43]. Note that this lysin dataset and phyl-
ogeny is the same as those from [44], except that a single
site containing an alignment gap was excluded. The sec-
ond real dataset was comprised of 37 genes located within
the genomic region of Listeria bacteria that encode the
components of the flagellar system (Imo0675 -
Imo0717). We note that this region includes several pro-
teins of unknown function, and for comparative purposes
we included them in our dataset. Genes were partitioned
according to functional categories of the ListiList database
[45]. The sequence alignments, phylogenetic trees and
gene ontologies for this multi-gene dataset is available
online [46]. Although multi-gene datasets can be much
larger than ours, it represents both a real biological prob-
lem and serves as an illustration of the types of data upon
which these techniques can be used.
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